These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
110 related items for PubMed ID: 3919527
1. Cytochrome P-450-dependent fragmentation of DNA in reconstituted membranes. Luthman H, Ingelman-Sundberg M. Acta Pharmacol Toxicol (Copenh); 1985 Jan; 56(1):69-74. PubMed ID: 3919527 [Abstract] [Full Text] [Related]
2. Hydroxyl radical-mediated, cytochrome P-450-dependent metabolic activation of benzene in microsomes and reconstituted enzyme systems from rabbit liver. Johansson I, Ingelman-Sundberg M. J Biol Chem; 1983 Jun 25; 258(12):7311-6. PubMed ID: 6305935 [Abstract] [Full Text] [Related]
3. The mechanism of cytochrome P-450-dependent oxidation of ethanol in reconstituted membrane vesicles. Ingelman-Sundberg M, Johansson I. J Biol Chem; 1981 Jun 25; 256(12):6321-6. PubMed ID: 6787051 [Abstract] [Full Text] [Related]
4. NADPH-dependent production of oxy radicals by purified components of the rat liver mixed function oxidase system. I. Oxidation of hydroxyl radical scavenging agents. Winston GW, Cederbaum AI. J Biol Chem; 1983 Feb 10; 258(3):1508-13. PubMed ID: 6296101 [Abstract] [Full Text] [Related]
5. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase. Winston GW, Feierman DE, Cederbaum AI. Arch Biochem Biophys; 1984 Jul 10; 232(1):378-90. PubMed ID: 6331321 [Abstract] [Full Text] [Related]
6. Respective role of superoxide and hydroxyl radical in the activity of the reconstituted microsomal ethanol-oxidizing system. Ohnishi K, Lieber CS. Arch Biochem Biophys; 1978 Dec 10; 191(2):798-803. PubMed ID: 217312 [No Abstract] [Full Text] [Related]
7. Mechanisms of hydroxyl radical formation and ethanol oxidation by ethanol-inducible and other forms of rabbit liver microsomal cytochromes P-450. Ingelman-Sundberg M, Johansson I. J Biol Chem; 1984 May 25; 259(10):6447-58. PubMed ID: 6327680 [Abstract] [Full Text] [Related]
8. Evidence for two ethanol oxidizing pathways in reconstituted mixed-function oxidase systems. Winston GW, Cederbaum AI. Pharmacol Biochem Behav; 1983 May 25; 18 Suppl 1():189-94. PubMed ID: 6314373 [Abstract] [Full Text] [Related]
9. On the significance of the cytochrome P-450-dependent hydroxyl radical-mediated oxygenation mechanism. Ingelman-Sundberg M, Hagbjörk AL. Xenobiotica; 1982 Nov 25; 12(11):673-86. PubMed ID: 6301163 [Abstract] [Full Text] [Related]
10. Chemiluminescence studies on the generation of oxygen radicals from the interaction of NADPH-cytochrome P-450 reductase with iron. Puntarulo S, Cederbaum AI. Arch Biochem Biophys; 1987 Nov 01; 258(2):510-8. PubMed ID: 2823718 [Abstract] [Full Text] [Related]
11. Electron flow and complex formation during cytochrome P-450-catalyzed hydroxylation reactions in reconstituted membrane vesicles. Ingelman-Sundberg M, Johansson I. Acta Chem Scand B; 1984 Nov 01; 38(10):845-51. PubMed ID: 6442087 [No Abstract] [Full Text] [Related]
12. Reduction of 7-alkoxyresorufins by NADPH-cytochrome P450 reductase and its differential effects on their O-dealkylation by rat liver microsomal cytochrome P450. Dutton DR, Parkinson A. Arch Biochem Biophys; 1989 Feb 01; 268(2):617-29. PubMed ID: 2536534 [Abstract] [Full Text] [Related]
13. Reconstituted microsomal lipid peroxidation: ADP-Fe3+-dependent peroxidation of phospholipid vesicles containing NADPH-cytochrome P450 reductase and cytochrome P450. Morehouse LA, Aust SD. Free Radic Biol Med; 1988 Feb 01; 4(5):269-77. PubMed ID: 3129344 [Abstract] [Full Text] [Related]
14. NADH- and NADPH-dependent reconstituted p-nitroanisole O-demethylation system containing cytochrome P-450 with high affinity for cytochrome b5. Sugiyama T, Miki N, Yamano T. J Biochem; 1980 May 01; 87(5):1457-67. PubMed ID: 7390994 [Abstract] [Full Text] [Related]
15. Redox cycling of resorufin catalyzed by rat liver microsomal NADPH-cytochrome P450 reductase. Dutton DR, Reed GA, Parkinson A. Arch Biochem Biophys; 1989 Feb 01; 268(2):605-16. PubMed ID: 2464338 [Abstract] [Full Text] [Related]
16. Cytochrome b5 as electron donor to rabbit liver cytochrome P-450LM2 in reconstituted phospholipid vesicles. Ingelman-Sundberg M, Johansson I. Biochem Biophys Res Commun; 1980 Nov 28; 97(2):582-6. PubMed ID: 6781498 [No Abstract] [Full Text] [Related]
17. Optimization of yeast-expressed human liver cytochrome P450 3A4 catalytic activities by coexpressing NADPH-cytochrome P450 reductase and cytochrome b5. Peyronneau MA, Renaud JP, Truan G, Urban P, Pompon D, Mansuy D. Eur J Biochem; 1992 Jul 01; 207(1):109-16. PubMed ID: 1628642 [Abstract] [Full Text] [Related]
18. Increased microsomal interaction with iron and oxygen radical generation after chronic acetone treatment. Puntarulo S, Cederbaum AI. Biochim Biophys Acta; 1988 Jan 12; 964(1):46-52. PubMed ID: 3120790 [Abstract] [Full Text] [Related]
19. Regulative mechanisms in NADH- and NADPH-supported N-oxidation of 4-chloroaniline catalyzed by cytochrome b5-enriched rabbit liver microsomal fractions. Golly I, Hlavica P. Biochim Biophys Acta; 1987 Jun 17; 913(2):219-27. PubMed ID: 3109485 [Abstract] [Full Text] [Related]
20. Comparative study of monomeric reconstituted and membrane microsomal monooxygenase systems of the rabbit liver. II. Kinetic parameters of reductase and monooxygenase reactions. Kanaeva IP, Nikityuk OV, Davydov DR, Dedinskii IR, Koen YM, Kuznetsova GP, Skotselyas ED, Bachmanova GI, Archakov AI. Arch Biochem Biophys; 1992 Nov 01; 298(2):403-12. PubMed ID: 1416971 [Abstract] [Full Text] [Related] Page: [Next] [New Search]