These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


191 related items for PubMed ID: 3920203

  • 1. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities.
    Thompson J, Chassy BM, Egan W.
    J Bacteriol; 1985 Apr; 162(1):217-23. PubMed ID: 3920203
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Regulation of glycolysis and sugar phosphotransferase activities in Streptococcus lactis: growth in the presence of 2-deoxy-D-glucose.
    Thompson J, Chassy BM.
    J Bacteriol; 1983 May; 154(2):819-30. PubMed ID: 6404888
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr.
    Ye JJ, Reizer J, Cui X, Saier MH.
    J Biol Chem; 1994 Apr 22; 269(16):11837-44. PubMed ID: 8163482
    [Abstract] [Full Text] [Related]

  • 7. Regulation of methyl-beta-d-thiogalactopyranoside-6-phosphate accumulation in Streptococcus lactis by exclusion and expulsion mechanisms.
    Thompson J, Saier MH.
    J Bacteriol; 1981 Jun 22; 146(3):885-94. PubMed ID: 6787017
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Carbohydrate metabolism in lactic streptococci: fate of galactose supplied in free or disaccharide form.
    Lee R, Molskness T, Sandine WE, Elliker PR.
    Appl Microbiol; 1973 Dec 22; 26(6):951-8. PubMed ID: 4203337
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Catabolite inhibition and sequential metabolism of sugars by Streptococcus lactis.
    Thompson J, Turner KW, Thomas TD.
    J Bacteriol; 1978 Mar 22; 133(3):1163-74. PubMed ID: 417061
    [Abstract] [Full Text] [Related]

  • 12. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C, Koebmann B, Jensen PR.
    Biotechnol Appl Biochem; 2008 May 22; 50(Pt 1):35-40. PubMed ID: 17822381
    [Abstract] [Full Text] [Related]

  • 13. Influence of the lactose plasmid on the metabolism of galactose by Streptococcus lactis.
    LeBlanc DJ, Crow VL, Lee LN, Garon CF.
    J Bacteriol; 1979 Feb 22; 137(2):878-84. PubMed ID: 106044
    [Abstract] [Full Text] [Related]

  • 14. Phenotypic consequences resulting from a methionine-to-valine substitution at position 48 in the HPr protein of Streptococcus salivarius.
    Plamondon P, Brochu D, Thomas S, Fradette J, Gauthier L, Vaillancourt K, Buckley N, Frenette M, Vadeboncoeur C.
    J Bacteriol; 1999 Nov 22; 181(22):6914-21. PubMed ID: 10559156
    [Abstract] [Full Text] [Related]

  • 15. Properties of a Streptococcus lactis strain that ferments lactose slowly.
    Crow VL, Thomas TD.
    J Bacteriol; 1984 Jan 22; 157(1):28-34. PubMed ID: 6418719
    [Abstract] [Full Text] [Related]

  • 16. Natural sweetening of food products by engineering Lactococcus lactis for glucose production.
    Pool WA, Neves AR, Kok J, Santos H, Kuipers OP.
    Metab Eng; 2006 Sep 22; 8(5):456-64. PubMed ID: 16844396
    [Abstract] [Full Text] [Related]

  • 17. Uptake and metabolism of sucrose by Streptococcus lactis.
    Thompson J, Chassy BM.
    J Bacteriol; 1981 Aug 22; 147(2):543-51. PubMed ID: 6267012
    [Abstract] [Full Text] [Related]

  • 18. Characterization of lac+ transductants of Streptococcus lactis.
    Molskness TA, Sandine WE, Brown LR.
    Appl Microbiol; 1974 Nov 22; 28(5):753-8. PubMed ID: 4216286
    [Abstract] [Full Text] [Related]

  • 19. Engineering Lactococcus lactis for production of mannitol: high yields from food-grade strains deficient in lactate dehydrogenase and the mannitol transport system.
    Gaspar P, Neves AR, Ramos A, Gasson MJ, Shearman CA, Santos H.
    Appl Environ Microbiol; 2004 Mar 22; 70(3):1466-74. PubMed ID: 15006767
    [Abstract] [Full Text] [Related]

  • 20. Replacement of isoleucine-47 by threonine in the HPr protein of Streptococcus salivarius abrogates the preferential metabolism of glucose and fructose over lactose and melibiose but does not prevent the phosphorylation of HPr on serine-46.
    Gauthier M, Brochu D, Eltis LD, Thomas S, Vadeboncoeur C.
    Mol Microbiol; 1997 Aug 22; 25(4):695-705. PubMed ID: 9379899
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.