These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Macular cone abnormalities in retinitis pigmentosa with preserved central vision using adaptive optics scanning laser ophthalmoscopy. Makiyama Y, Ooto S, Hangai M, Takayama K, Uji A, Oishi A, Ogino K, Nakagawa S, Yoshimura N. PLoS One; 2013; 8(11):e79447. PubMed ID: 24260224 [Abstract] [Full Text] [Related]
3. Early detection of cone photoreceptor cell loss in retinitis pigmentosa using adaptive optics scanning laser ophthalmoscopy. Nakatake S, Murakami Y, Funatsu J, Koyanagi Y, Akiyama M, Momozawa Y, Ishibashi T, Sonoda KH, Ikeda Y. Graefes Arch Clin Exp Ophthalmol; 2019 Jun; 257(6):1169-1181. PubMed ID: 30937533 [Abstract] [Full Text] [Related]
4. Assessing Photoreceptor Structure in Retinitis Pigmentosa and Usher Syndrome. Sun LW, Johnson RD, Langlo CS, Cooper RF, Razeen MM, Russillo MC, Dubra A, Connor TB, Han DP, Pennesi ME, Kay CN, Weinberg DV, Stepien KE, Carroll J. Invest Ophthalmol Vis Sci; 2016 May 01; 57(6):2428-42. PubMed ID: 27145477 [Abstract] [Full Text] [Related]
5. High-resolution imaging with adaptive optics in patients with inherited retinal degeneration. Duncan JL, Zhang Y, Gandhi J, Nakanishi C, Othman M, Branham KE, Swaroop A, Roorda A. Invest Ophthalmol Vis Sci; 2007 Jul 01; 48(7):3283-91. PubMed ID: 17591900 [Abstract] [Full Text] [Related]
6. Inverse pattern of photoreceptor abnormalities in retinitis pigmentosa and cone-rod dystrophy. Yokochi M, Li D, Horiguchi M, Kishi S. Doc Ophthalmol; 2012 Dec 01; 125(3):211-8. PubMed ID: 22865508 [Abstract] [Full Text] [Related]
7. The association between cone density and visual function in the macula of patients with retinitis pigmentosa. Ueda-Consolvo T, Ozaki H, Nakamura T, Oiwake T, Hayashi A. Graefes Arch Clin Exp Ophthalmol; 2019 Sep 01; 257(9):1841-1846. PubMed ID: 31172265 [Abstract] [Full Text] [Related]
8. Cone photoreceptor dysfunction in retinitis pigmentosa revealed by optoretinography. Lassoued A, Zhang F, Kurokawa K, Liu Y, Bernucci MT, Crowell JA, Miller DT. Proc Natl Acad Sci U S A; 2021 Nov 23; 118(47):. PubMed ID: 34795055 [Abstract] [Full Text] [Related]
9. Morphologic and Functional Assessment of Photoreceptors After Macula-Off Retinal Detachment With Adaptive-Optics OCT and Microperimetry. Reumueller A, Wassermann L, Salas M, Karantonis MG, Sacu S, Georgopoulos M, Drexler W, Pircher M, Pollreisz A, Schmidt-Erfurth U. Am J Ophthalmol; 2020 Jun 23; 214():72-85. PubMed ID: 31883465 [Abstract] [Full Text] [Related]
10. Correlation of outer nuclear layer thickness with cone density values in patients with retinitis pigmentosa and healthy subjects. Menghini M, Lujan BJ, Zayit-Soudry S, Syed R, Porco TC, Bayabo K, Carroll J, Roorda A, Duncan JL. Invest Ophthalmol Vis Sci; 2014 Dec 16; 56(1):372-81. PubMed ID: 25515570 [Abstract] [Full Text] [Related]
11. Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions. Wang Q, Tuten WS, Lujan BJ, Holland J, Bernstein PS, Schwartz SD, Duncan JL, Roorda A. Invest Ophthalmol Vis Sci; 2015 Jan 13; 56(2):778-86. PubMed ID: 25587056 [Abstract] [Full Text] [Related]
12. Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. Talcott KE, Ratnam K, Sundquist SM, Lucero AS, Lujan BJ, Tao W, Porco TC, Roorda A, Duncan JL. Invest Ophthalmol Vis Sci; 2011 Apr 06; 52(5):2219-26. PubMed ID: 21087953 [Abstract] [Full Text] [Related]
14. Interpretation of Flood-Illuminated Adaptive Optics Images in Subjects with Retinitis Pigmentosa. Gale MJ, Feng S, Titus HE, Smith TB, Pennesi ME. Adv Exp Med Biol; 2016 Apr 06; 854():291-7. PubMed ID: 26427424 [Abstract] [Full Text] [Related]
15. Visual Function at the Atrophic Border in Choroideremia Assessed with Adaptive Optics Microperimetry. Tuten WS, Vergilio GK, Young GJ, Bennett J, Maguire AM, Aleman TS, Brainard DH, Morgan JIW. Ophthalmol Retina; 2019 Oct 06; 3(10):888-899. PubMed ID: 31235310 [Abstract] [Full Text] [Related]
16. Cone Spacing Correlates With Retinal Thickness and Microperimetry in Patients With Inherited Retinal Degenerations. Foote KG, De la Huerta I, Gustafson K, Baldwin A, Zayit-Soudry S, Rinella N, Porco TC, Roorda A, Duncan JL. Invest Ophthalmol Vis Sci; 2019 Mar 01; 60(4):1234-1243. PubMed ID: 30924848 [Abstract] [Full Text] [Related]
17. Relationship Between Foveal Cone Structure and Visual Acuity Measured With Adaptive Optics Scanning Laser Ophthalmoscopy in Retinal Degeneration. Foote KG, Loumou P, Griffin S, Qin J, Ratnam K, Porco TC, Roorda A, Duncan JL. Invest Ophthalmol Vis Sci; 2018 Jul 02; 59(8):3385-3393. PubMed ID: 30025078 [Abstract] [Full Text] [Related]
18. Comparing Cone Structure and Function in RHO- and RPGR-Associated Retinitis Pigmentosa. Foote KG, Wong JJ, Boehm AE, Bensinger E, Porco TC, Roorda A, Duncan JL. Invest Ophthalmol Vis Sci; 2020 Apr 09; 61(4):42. PubMed ID: 32343782 [Abstract] [Full Text] [Related]
19. Multimodal imaging of a case of peripheral cone dystrophy. Ito N, Kameya S, Gocho K, Hayashi T, Kikuchi S, Katagiri S, Gekka T, Yamaki K, Takahashi H, Tsuneoka H. Doc Ophthalmol; 2015 Jun 09; 130(3):241-51. PubMed ID: 25708979 [Abstract] [Full Text] [Related]
20. Intensity-based optoretinography reveals sub-clinical deficits in cone function in retinitis pigmentosa. Gaffney M, Connor TB, Cooper RF. Front Ophthalmol (Lausanne); 2024 Jun 09; 4():1373549. PubMed ID: 38984134 [Abstract] [Full Text] [Related] Page: [Next] [New Search]