These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
148 related items for PubMed ID: 3921529
1. Influence of the staphylococcinlike peptide Pep 5 on membrane potential of bacterial cells and cytoplasmic membrane vesicles. Sahl HG. J Bacteriol; 1985 May; 162(2):833-6. PubMed ID: 3921529 [Abstract] [Full Text] [Related]
2. Mode of action of the staphylococcinlike peptide Pep 5: voltage-dependent depolarization of bacterial and artificial membranes. Kordel M, Benz R, Sahl HG. J Bacteriol; 1988 Jan; 170(1):84-8. PubMed ID: 3335484 [Abstract] [Full Text] [Related]
3. Effects of staphylococcin 1580 on cells and membrane vesicles of Bacillus subtilis W23. Weerkamp A, Vogels GD. Biochim Biophys Acta; 1978 Mar 20; 539(3):386-97. PubMed ID: 415763 [Abstract] [Full Text] [Related]
6. Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles. Ruhr E, Sahl HG. Antimicrob Agents Chemother; 1985 May 20; 27(5):841-5. PubMed ID: 4015074 [Abstract] [Full Text] [Related]
8. The mode of action of SA-FF22, a lantibiotic isolated from Streptococcus pyogenes strain FF22. Jack R, Benz R, Tagg J, Sahl HG. Eur J Biochem; 1994 Jan 15; 219(1-2):699-705. PubMed ID: 8307035 [Abstract] [Full Text] [Related]
11. Induction of autolysis of staphylococci by the basic peptide antibiotics Pep 5 and nisin and their influence on the activity of autolytic enzymes. Bierbaum G, Sahl HG. Arch Microbiol; 1985 Apr 15; 141(3):249-54. PubMed ID: 4004448 [Abstract] [Full Text] [Related]
14. Amino acid transport in membrane vesicles of Bacillus subtilis. Konings WN, Freese E. J Biol Chem; 1972 Apr 25; 247(8):2408-18. PubMed ID: 4401701 [No Abstract] [Full Text] [Related]
15. Mode of action of the staphylococcin-like peptide Pep 5 and culture conditions effecting its activity. Sahl HG, Brandis H. Zentralbl Bakteriol Mikrobiol Hyg A Med Mikrobiol Infekt Parasitol; 1982 Jun 25; 252(2):166-75. PubMed ID: 6181629 [Abstract] [Full Text] [Related]
16. Vesicles mimicking normal and cancer cell membranes exhibit differential responses to the cell-penetrating peptide Pep-1. Almarwani B, Phambu EN, Alexander C, Nguyen HAT, Phambu N, Sunda-Meya A. Biochim Biophys Acta Biomembr; 2018 Jun 25; 1860(6):1394-1402. PubMed ID: 29621495 [Abstract] [Full Text] [Related]
17. Permeation of bacterial cells, permeation of cytoplasmic and artificial membrane vesicles, and channel formation on lipid bilayers by peptide antibiotic AS-48. Gálvez A, Maqueda M, Martínez-Bueno M, Valdivia E. J Bacteriol; 1991 Jan 25; 173(2):886-92. PubMed ID: 1702784 [Abstract] [Full Text] [Related]
18. The antibacterial action of microcin J25: evidence for disruption of cytoplasmic membrane energization in Salmonella newport. Rintoul MR, de Arcuri BF, Salomón RA, Farías RN, Morero RD. FEMS Microbiol Lett; 2001 Nov 13; 204(2):265-70. PubMed ID: 11731133 [Abstract] [Full Text] [Related]