These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Genome Resequencing Identifies Unique Adaptations of Tibetan Chickens to Hypoxia and High-Dose Ultraviolet Radiation in High-Altitude Environments. Zhang Q, Gou W, Wang X, Zhang Y, Ma J, Zhang H, Zhang Y, Zhang H. Genome Biol Evol; 2016 Feb 23; 8(3):765-76. PubMed ID: 26907498 [Abstract] [Full Text] [Related]
24. Phylogenetic relationships of extant zokors (Myospalacinae) (Rodentia, Spalacidae) inferred from mitochondrial DNA sequences. Su J, Ji W, Wang J, Gleeson DM, Zhou J, Hua L, Wei Y. Mitochondrial DNA; 2014 Apr 23; 25(2):135-41. PubMed ID: 23607477 [Abstract] [Full Text] [Related]
25. Hb adaptation to hypoxia in high-altitude fishes: Fresh evidence from schizothoracinae fishes in the Qinghai-Tibetan Plateau. Lei Y, Yang L, Zhou Y, Wang C, Lv W, Li L, He S. Int J Biol Macromol; 2021 Aug 31; 185():471-484. PubMed ID: 34214574 [Abstract] [Full Text] [Related]
26. Microbial Biogeography along the Gastrointestinal Tract Segments of Sympatric Subterranean Rodents (Eospalax baileyi and Eospalax cansus). Liu D, Yan J, Wang H, Jiang F, Song P, Cai Z, Zhang T. Animals (Basel); 2021 Nov 18; 11(11):. PubMed ID: 34828028 [Abstract] [Full Text] [Related]
27. Plateau zokors (Eospalax baileyi) respond to secondary metabolites from the roots of Stellera chamaejasme by enhancing hepatic inflammatory factors and metabolic pathway genes. Tan Y, Liu Q, Wang Z, Pu Q, Shi S, Su J. Comp Biochem Physiol C Toxicol Pharmacol; 2022 Aug 18; 258():109368. PubMed ID: 35589064 [Abstract] [Full Text] [Related]
28. Hypoxia adaptations in the grey wolf (Canis lupus chanco) from Qinghai-Tibet Plateau. Zhang W, Fan Z, Han E, Hou R, Zhang L, Galaverni M, Huang J, Liu H, Silva P, Li P, Pollinger JP, Du L, Zhang X, Yue B, Wayne RK, Zhang Z. PLoS Genet; 2014 Jul 18; 10(7):e1004466. PubMed ID: 25078401 [Abstract] [Full Text] [Related]
29. Comparative transcriptomic analysis of Tibetan Gynaephora to explore the genetic basis of insect adaptation to divergent altitude environments. Zhang QL, Zhang L, Yang XZ, Wang XT, Li XP, Wang J, Chen JY, Yuan ML. Sci Rep; 2017 Dec 05; 7(1):16972. PubMed ID: 29208990 [Abstract] [Full Text] [Related]
30. Genomic analysis unveils mechanisms of northward invasion and signatures of plateau adaptation in the Asian house rat. Chen Y, Hou G, Jing M, Teng H, Liu Q, Yang X, Wang Y, Qu J, Shi C, Lu L, Zhang J, Zhang Y. Mol Ecol; 2021 Dec 05; 30(24):6596-6610. PubMed ID: 34564921 [Abstract] [Full Text] [Related]
31. Whole-genome resequencing provides insights into the evolution and divergence of the native domestic yaks of the Qinghai-Tibet Plateau. Chai ZX, Xin JW, Zhang CF, Dawayangla, Luosang, Zhang Q, Pingcuozhandui, Li C, Zhu Y, Cao HW, Wang H, Han JL, Ji QM, Zhong JC. BMC Evol Biol; 2020 Oct 27; 20(1):137. PubMed ID: 33109104 [Abstract] [Full Text] [Related]
32. Examining object recognition and object-in-Place memory in plateau zokors, Eospalax baileyi. Hegab IM, Tan Y, Wang C, Yao B, Wang H, Ji W, Su J. Behav Processes; 2018 Jan 27; 146():34-41. PubMed ID: 29129726 [Abstract] [Full Text] [Related]
33. Denisovans and Homo sapiens on the Tibetan Plateau: dispersals and adaptations. Zhang P, Zhang X, Zhang X, Gao X, Huerta-Sanchez E, Zwyns N. Trends Ecol Evol; 2022 Mar 27; 37(3):257-267. PubMed ID: 34863581 [Abstract] [Full Text] [Related]
34. Genetic Adaptation of Schizothoracine Fish to the Phased Uplifting of the Qinghai-Tibetan Plateau. Zhang D, Yu M, Hu P, Peng S, Liu Y, Li W, Wang C, He S, Zhai W, Xu Q, Chen L. G3 (Bethesda); 2017 Apr 03; 7(4):1267-1276. PubMed ID: 28209761 [Abstract] [Full Text] [Related]
35. Vitamin D3 Metabolic Enzymes in Plateau Zokor (Myospalax baileyi) and Plateau Pika (Ochotona curzoniae): Expression and Response to Hypoxia. Chen X, An Z, Wei L, Zhang J, Li J, Wang Z, Gao C, Wei D. Animals (Basel); 2022 Sep 11; 12(18):. PubMed ID: 36139230 [Abstract] [Full Text] [Related]
36. Gut Microbiome Changes in Captive Plateau Zokors (Eospalax baileyi). Liu D, Song P, Yan J, Wang H, Cai Z, Xie J, Zhang T. Evol Bioinform Online; 2021 Sep 11; 17():1176934321996353. PubMed ID: 34103885 [Abstract] [Full Text] [Related]
37. Genomic and functional evidence reveals convergent evolution in fishes on the Tibetan Plateau. Yang L, Wang Y, Sun N, Chen J, He S. Mol Ecol; 2021 Nov 11; 30(22):5752-5764. PubMed ID: 34516715 [Abstract] [Full Text] [Related]
38. Antifertility effects of levonorgestrel, quinestrol, and their mixture (EP-1) on plateau zokor in the Qinghai-Tibetan Plateau. Kang Y, Tan Y, Wang C, Yao B, An K, Liu M, Su J. Integr Zool; 2022 Nov 11; 17(6):1002-1016. PubMed ID: 35271766 [Abstract] [Full Text] [Related]
39. Gut Microbiome Alterations and Hepatic Metabolic Flexibility in the Gansu Zokor, Eospalax cansus: Adaptation to Hypoxic Niches. Lin J, Yang Q, Guo J, Li M, Hao Z, He J, Li J. Front Cardiovasc Med; 2022 Nov 11; 9():814076. PubMed ID: 35402538 [Abstract] [Full Text] [Related]
40. [Molecular authentication of Sailonggu and its resource distribution in Qinghai-Tibet Plateau]. Zhao F, Deng XG, Zhang TZ, Su JP, Lin GH. Zhongguo Zhong Yao Za Zhi; 2015 Feb 11; 40(3):399-403. PubMed ID: 26084159 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]