These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Optimization and toxicity assessment of a combined electrocoagulation, H2O2/Fe2+/UV and activated carbon adsorption for textile wastewater treatment. GilPavas E, Dobrosz-Gómez I, Gómez-García MÁ. Sci Total Environ; 2019 Feb 15; 651(Pt 1):551-560. PubMed ID: 30245411 [Abstract] [Full Text] [Related]
4. Electrochemical treatment and operating cost analysis of textile wastewater using sacrificial iron electrodes. Kobya M, Demirbas E, Akyol A. Water Sci Technol; 2009 Feb 15; 60(9):2261-70. PubMed ID: 19901457 [Abstract] [Full Text] [Related]
5. Electrocoagulation applied for textile wastewater oxidation using iron slag as electrodes. De Maman R, da Luz VC, Behling L, Dervanoski A, Dalla Rosa C, Pasquali GDL. Environ Sci Pollut Res Int; 2022 May 15; 29(21):31713-31722. PubMed ID: 35018597 [Abstract] [Full Text] [Related]
7. Application of hybrid electrocoagulation and electrooxidation process for treatment of wastewater from the cotton textile industry. Asfaha YG, Zewge F, Yohannes T, Kebede S. Chemosphere; 2022 Sep 15; 302():134706. PubMed ID: 35523291 [Abstract] [Full Text] [Related]
8. Efficient integration of electrocoagulation treatment with the spray-pyrolyzed activated carbon coating on stainless steel electrodes for textile effluent-bath reuse with ease. Gowthaman S, Selvaraju T. Water Environ Res; 2023 Oct 15; 95(10):e10938. PubMed ID: 37815304 [Abstract] [Full Text] [Related]
9. Combined electrocoagulation and electro-oxidation of industrial textile wastewater treatment in a continuous multi-stage reactor. GilPavas E, Arbeláez-Castaño P, Medina J, Acosta DA. Water Sci Technol; 2017 Nov 15; 76(9-10):2515-2525. PubMed ID: 29144309 [Abstract] [Full Text] [Related]
13. Using scrap zero valent iron to replace dissolved iron in the Fenton process for textile wastewater treatment: Optimization and assessment of toxicity and biodegradability. GilPavas E, Correa-Sánchez S, Acosta DA. Environ Pollut; 2019 Sep 15; 252(Pt B):1709-1718. PubMed ID: 31284213 [Abstract] [Full Text] [Related]
16. Solar photo-Fenton with simultaneous addition of ozone for the treatment of real industrial wastewaters. Sanchis S, Meschede-Anglada L, Serra A, Simon FX, Sixto G, Casas N, Garcia-Montaño J. Water Sci Technol; 2018 Jun 15; 77(9-10):2497-2508. PubMed ID: 29893739 [Abstract] [Full Text] [Related]
17. Electrochemical oxidation of textile industry wastewater by graphite electrodes. Bhatnagar R, Joshi H, Mall ID, Srivastava VC. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014 Jun 15; 49(8):955-66. PubMed ID: 24766597 [Abstract] [Full Text] [Related]
19. Comprehensive study on the selection and performance of the best electrode pair for electrocoagulation of textile wastewater using multi-criteria decision-making methods (TOPSIS, VIKOR and PROMETHEE II). Ahmed T, Ahsan A, Khan MHRB, Nahian TK, Antar RH, Hasan A, Karim MR, Shafiquzzaman M, Imteaz M. J Environ Manage; 2024 Jul 15; 363():121337. PubMed ID: 38850903 [Abstract] [Full Text] [Related]