These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
114 related items for PubMed ID: 39244885
1. Effects of SpGSH1 and SpPCS1 overexpression or co-overexpression on cadmium accumulation in yeast and Spirodela polyrhiza. Chen Y, Yang J, Zhao X, Sun Z, Li G, Hussain S, Li X, Zhang L, Wang Z, Gong H, Hou H. Plant Physiol Biochem; 2024 Nov; 216():109097. PubMed ID: 39244885 [Abstract] [Full Text] [Related]
2. Role of Nramp transporter genes of Spirodela polyrhiza in cadmium accumulation. Chen Y, Li G, Yang J, Zhao X, Sun Z, Hou H. Ecotoxicol Environ Saf; 2021 Dec 20; 227():112907. PubMed ID: 34673410 [Abstract] [Full Text] [Related]
3. A MYB4-MAN3-Mannose-MNB1 signaling cascade regulates cadmium tolerance in Arabidopsis. Yan X, Huang Y, Song H, Chen F, Geng Q, Hu M, Zhang C, Wu X, Fan T, Cao S. PLoS Genet; 2021 Jun 20; 17(6):e1009636. PubMed ID: 34181654 [Abstract] [Full Text] [Related]
4. Genome-Wide Identification of the Nramp Gene Family in Spirodela polyrhiza and Expression Analysis under Cadmium Stress. Chen Y, Zhao X, Li G, Kumar S, Sun Z, Li Y, Guo W, Yang J, Hou H. Int J Mol Sci; 2021 Jun 15; 22(12):. PubMed ID: 34203933 [Abstract] [Full Text] [Related]
5. WRKY12 represses GSH1 expression to negatively regulate cadmium tolerance in Arabidopsis. Han Y, Fan T, Zhu X, Wu X, Ouyang J, Jiang L, Cao S. Plant Mol Biol; 2019 Jan 15; 99(1-2):149-159. PubMed ID: 30617455 [Abstract] [Full Text] [Related]
6. Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Guo J, Dai X, Xu W, Ma M. Chemosphere; 2008 Jul 15; 72(7):1020-6. PubMed ID: 18504054 [Abstract] [Full Text] [Related]
7. Zinc-Finger Transcription Factor ZAT6 Positively Regulates Cadmium Tolerance through the Glutathione-Dependent Pathway in Arabidopsis. Chen J, Yang L, Yan X, Liu Y, Wang R, Fan T, Ren Y, Tang X, Xiao F, Liu Y, Cao S. Plant Physiol; 2016 May 15; 171(1):707-19. PubMed ID: 26983992 [Abstract] [Full Text] [Related]
8. Phytochelatin synthase of Thlaspi caerulescens enhanced tolerance and accumulation of heavy metals when expressed in yeast and tobacco. Liu GY, Zhang YX, Chai TY. Plant Cell Rep; 2011 Jun 15; 30(6):1067-76. PubMed ID: 21327392 [Abstract] [Full Text] [Related]
9. Arabidopsis SUMO E3 ligase SIZ1 enhances cadmium tolerance via the glutathione-dependent phytochelatin synthesis pathway. Zheng T, Wu G, Tao X, He B. Plant Sci; 2022 Sep 15; 322():111357. PubMed ID: 35718335 [Abstract] [Full Text] [Related]
10. Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd(2+) tolerance and accumulation but not translocation to the shoot. Pomponi M, Censi V, Di Girolamo V, De Paolis A, di Toppi LS, Aromolo R, Costantino P, Cardarelli M. Planta; 2006 Jan 15; 223(2):180-90. PubMed ID: 16133212 [Abstract] [Full Text] [Related]
11. Two mulberry phytochelatin synthase genes confer zinc/cadmium tolerance and accumulation in transgenic Arabidopsis and tobacco. Fan W, Guo Q, Liu C, Liu X, Zhang M, Long D, Xiang Z, Zhao A. Gene; 2018 Mar 01; 645():95-104. PubMed ID: 29277319 [Abstract] [Full Text] [Related]
12. Overexpression of AtPCS1 in tobacco increases arsenic and arsenic plus cadmium accumulation and detoxification. Zanella L, Fattorini L, Brunetti P, Roccotiello E, Cornara L, D'Angeli S, Della Rovere F, Cardarelli M, Barbieri M, Sanità di Toppi L, Degola F, Lindberg S, Altamura MM, Falasca G. Planta; 2016 Mar 01; 243(3):605-22. PubMed ID: 26563149 [Abstract] [Full Text] [Related]
13. Characterization of a phytochelatin synthase gene from Ipomoea pes-caprae involved in cadmium tolerance and accumulation in yeast and plants. Su H, Zou T, Lin R, Zheng J, Jian S, Zhang M. Plant Physiol Biochem; 2020 Oct 01; 155():743-755. PubMed ID: 32866789 [Abstract] [Full Text] [Related]
14. Cadmium removal by Lemna minor and Spirodela polyrhiza. Chaudhuri D, Majumder A, Misra AK, Bandyopadhyay K. Int J Phytoremediation; 2014 Oct 01; 16(7-12):1119-32. PubMed ID: 24933906 [Abstract] [Full Text] [Related]
15. Intraspecific variations in cadmium tolerance and phytoaccumulation in giant duckweed (Spirodela polyrhiza). Chen D, Zhang H, Wang Q, Shao M, Li X, Chen D, Zeng R, Song Y. J Hazard Mater; 2020 Aug 05; 395():122672. PubMed ID: 32305716 [Abstract] [Full Text] [Related]
16. Biochemical responses and accumulation of cadmium in Spirodela polyrhiza. Rolli NM, Suvarnakhandi SS, Mulgund GS, Ratageri RH, Taranath TC. J Environ Biol; 2010 Jul 05; 31(4):529-32. PubMed ID: 21186730 [Abstract] [Full Text] [Related]
17. Functional characterisation of two phytochelatin synthases in rice (Oryza sativa cv. Milyang 117) that respond to cadmium stress. Park HC, Hwang JE, Jiang Y, Kim YJ, Kim SH, Nguyen XC, Kim CY, Chung WS. Plant Biol (Stuttg); 2019 Sep 05; 21(5):854-861. PubMed ID: 30929297 [Abstract] [Full Text] [Related]
18. MYB4 transcription factor, a member of R2R3-subfamily of MYB domain protein, regulates cadmium tolerance via enhanced protection against oxidative damage and increases expression of PCS1 and MT1C in Arabidopsis. Agarwal P, Mitra M, Banerjee S, Roy S. Plant Sci; 2020 Aug 05; 297():110501. PubMed ID: 32563471 [Abstract] [Full Text] [Related]