These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
156 related items for PubMed ID: 39258917
1. Transcriptomic characterization of recombinant Clostridium beijerinckii NCIMB 8052 expressing methylglyoxal synthase and glyoxal reductase from Clostridium pasteurianum ATCC 6013. Kumar S, Agyeman-Duah E, Awaga-Cromwell MM, Ujor VC. Appl Environ Microbiol; 2024 Oct 23; 90(10):e0101224. PubMed ID: 39258917 [Abstract] [Full Text] [Related]
2. Combined evolutionary engineering and genetic manipulation improve low pH tolerance and butanol production in a synthetic microbial Clostridium community. Wen Z, Ledesma-Amaro R, Lu M, Jiang Y, Gao S, Jin M, Yang S. Biotechnol Bioeng; 2020 Jul 23; 117(7):2008-2022. PubMed ID: 32170874 [Abstract] [Full Text] [Related]
3. Modulation of the Acetone/Butanol Ratio during Fermentation of Corn Stover-Derived Hydrolysate by Clostridium beijerinckii Strain NCIMB 8052. Liu ZY, Yao XQ, Zhang Q, Liu Z, Wang ZJ, Zhang YY, Li FL. Appl Environ Microbiol; 2017 Apr 01; 83(7):. PubMed ID: 28130305 [Abstract] [Full Text] [Related]
5. Investigation of availability of a high throughput screening method for predicting butanol solvent -producing ability of Clostridium beijerinckii. Su H, Zhu J, Liu G, Tan F. BMC Microbiol; 2016 Jul 22; 16(1):160. PubMed ID: 27448996 [Abstract] [Full Text] [Related]
6. Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis. Shi Z, Blaschek HP. Appl Environ Microbiol; 2008 Dec 22; 74(24):7709-14. PubMed ID: 18849451 [Abstract] [Full Text] [Related]
7. Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052. Milne CB, Eddy JA, Raju R, Ardekani S, Kim PJ, Senger RS, Jin YS, Blaschek HP, Price ND. BMC Syst Biol; 2011 Aug 16; 5():130. PubMed ID: 21846360 [Abstract] [Full Text] [Related]
8. The Butanol Producing Microbe Clostridium beijerinckii NCIMB 14988 Manipulated Using Forward and Reverse Genetic Tools. Little GT, Willson BJ, Heap JT, Winzer K, Minton NP. Biotechnol J; 2018 Nov 16; 13(11):e1700711. PubMed ID: 29660854 [Abstract] [Full Text] [Related]
9. Enhanced butanol production by increasing NADH and ATP levels in Clostridium beijerinckii NCIMB 8052 by insertional inactivation of Cbei_4110. Liu J, Guo T, Wang D, Shen X, Liu D, Niu H, Liang L, Ying H. Appl Microbiol Biotechnol; 2016 Jun 16; 100(11):4985-96. PubMed ID: 26830101 [Abstract] [Full Text] [Related]
10. Transcription profiling of butanol producer Clostridium beijerinckii NRRL B-598 using RNA-Seq. Sedlar K, Koscova P, Vasylkivska M, Branska B, Kolek J, Kupkova K, Patakova P, Provaznik I. BMC Genomics; 2018 May 30; 19(1):415. PubMed ID: 29843608 [Abstract] [Full Text] [Related]
11. Butanol production by a Clostridium beijerinckii mutant with high ferulic acid tolerance. Liu J, Guo T, Wang D, Xu J, Ying H. Biotechnol Appl Biochem; 2016 Sep 30; 63(5):727-733. PubMed ID: 26201246 [Abstract] [Full Text] [Related]
12. Multiplex genome engineering in Clostridium beijerinckii NCIMB 8052 using CRISPR-Cas12a. Patinios C, de Vries ST, Diallo M, Lanza L, Verbrugge PLJVQ, López-Contreras AM, van der Oost J, Weusthuis RA, Kengen SWM. Sci Rep; 2023 Jun 22; 13(1):10153. PubMed ID: 37349508 [Abstract] [Full Text] [Related]
13. Enhanced phenolic compounds tolerance response of Clostridium beijerinckii NCIMB 8052 by inactivation of Cbei_3304. Liu J, Lin Q, Chai X, Luo Y, Guo T. Microb Cell Fact; 2018 Mar 03; 17(1):35. PubMed ID: 29501062 [Abstract] [Full Text] [Related]
14. Interactions between Bacillus cereus CGMCC 1.895 and Clostridium beijerinckii NCIMB 8052 in coculture for butanol production under nonanaerobic conditions. Mai S, Wang G, Wu P, Gu C, Liu H, Zhang J, Wang G. Biotechnol Appl Biochem; 2017 Sep 03; 64(5):719-726. PubMed ID: 27306691 [Abstract] [Full Text] [Related]
15. Transcriptomic studies of solventogenic clostridia, Clostridium acetobutylicum and Clostridium beijerinckii. Patakova P, Branska B, Vasylkivska M, Jureckova K, Musilova J, Provaznik I, Sedlar K. Biotechnol Adv; 2022 Sep 03; 58():107889. PubMed ID: 34929313 [Abstract] [Full Text] [Related]
16. Chromosomal integration of aldo-keto-reductase and short-chain dehydrogenase/reductase genes in Clostridium beijerinckii NCIMB 8052 enhanced tolerance to lignocellulose-derived microbial inhibitory compounds. Okonkwo CC, Ujor V, Ezeji TC. Sci Rep; 2019 May 21; 9(1):7634. PubMed ID: 31114009 [Abstract] [Full Text] [Related]
17. Transcriptional analysis of amino acid, metal ion, vitamin and carbohydrate uptake in butanol-producing Clostridium beijerinckii NRRL B-598. Vasylkivska M, Jureckova K, Branska B, Sedlar K, Kolek J, Provaznik I, Patakova P. PLoS One; 2019 May 21; 14(11):e0224560. PubMed ID: 31697692 [Abstract] [Full Text] [Related]
18. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System. Wang S, Dong S, Wang P, Tao Y, Wang Y. Appl Environ Microbiol; 2017 May 15; 83(10):. PubMed ID: 28258147 [Abstract] [Full Text] [Related]
19. Adaptation and application of a two-plasmid inducible CRISPR-Cas9 system in Clostridium beijerinckii. Diallo M, Hocq R, Collas F, Chartier G, Wasels F, Wijaya HS, Werten MWT, Wolbert EJH, Kengen SWM, van der Oost J, Ferreira NL, López-Contreras AM. Methods; 2020 Feb 01; 172():51-60. PubMed ID: 31362039 [Abstract] [Full Text] [Related]
20. Fermentation of rice bran and defatted rice bran for butanol 5 production using clostridium beijerinckii NCIMB 8052. Lee J, Seo E, Kweon DH, Park K, Jin YS. J Microbiol Biotechnol; 2009 May 01; 19(5):482-90. PubMed ID: 19494696 [Abstract] [Full Text] [Related] Page: [Next] [New Search]