These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
112 related items for PubMed ID: 39259420
1. Response of crop seed germination and primary root elongation to a binary mixture of diclofenac and naproxen. Kummerová M, Zezulka Š, Babula P. Ecotoxicology; 2024 Nov; 33(9):1039-1046. PubMed ID: 39259420 [Abstract] [Full Text] [Related]
2. Seed germination, root elongation, root-tip mitosis, and micronucleus induction of five crop plants exposed to chromium in fluvo-aquic soil. Hou J, Liu GN, Xue W, Fu WJ, Liang BC, Liu XH. Environ Toxicol Chem; 2014 Mar; 33(3):671-6. PubMed ID: 24318542 [Abstract] [Full Text] [Related]
3. Sensitivity of physiological and biochemical endpoints in early ontogenetic stages of crops under diclofenac and paracetamol treatments. Zezulka Š, Kummerová M, Babula P, Hájková M, Oravec M. Environ Sci Pollut Res Int; 2019 Feb; 26(4):3965-3979. PubMed ID: 30552611 [Abstract] [Full Text] [Related]
4. Evaluation of biological endpoints in crop plants after exposure to non-steroidal anti-inflammatory drugs (NSAIDs): implications for phytotoxicological assessment of novel contaminants. Schmidt W, Redshaw CH. Ecotoxicol Environ Saf; 2015 Feb; 112():212-22. PubMed ID: 25463873 [Abstract] [Full Text] [Related]
5. Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops. Pan M, Chu LM. Ecotoxicol Environ Saf; 2016 Apr; 126():228-237. PubMed ID: 26773832 [Abstract] [Full Text] [Related]
6. Ecotoxicological impact of two soil remediation treatments in Lactuca sativa seeds. Rede D, Santos LHMLM, Ramos S, Oliva-Teles F, Antão C, Sousa SR, Delerue-Matos C. Chemosphere; 2016 Sep; 159():193-198. PubMed ID: 27289206 [Abstract] [Full Text] [Related]
7. Phytotoxicity of three plant-based biodiesels, unmodified castor oil, and Diesel fuel to alfalfa (Medicago sativa L.), lettuce (Lactuca sativa L.), radish (Raphanus sativus), and wheatgrass (Triticum aestivum). Bamgbose I, Anderson TA. Ecotoxicol Environ Saf; 2015 Dec; 122():268-74. PubMed ID: 26283287 [Abstract] [Full Text] [Related]
8. Individual and mixture toxicity evaluation of three pharmaceuticals to the germination and growth of Lactuca sativa seeds. Rede D, Santos LHMLM, Ramos S, Oliva-Teles F, Antão C, Sousa SR, Delerue-Matos C. Sci Total Environ; 2019 Jul 10; 673():102-109. PubMed ID: 30986672 [Abstract] [Full Text] [Related]
9. Phytotoxicity of 15 common pharmaceuticals on the germination of Lactuca sativa and photosynthesis of Chlamydomonas reinhardtii. Pino MR, Muñiz S, Val J, Navarro E. Environ Sci Pollut Res Int; 2016 Nov 10; 23(22):22530-22541. PubMed ID: 27553001 [Abstract] [Full Text] [Related]
10. Root response in Pisum sativum under naproxen stress: Morpho-anatomical, cytological, and biochemical traits. Svobodníková L, Kummerová M, Zezulka Š, Babula P, Sendecká K. Chemosphere; 2020 Nov 10; 258():127411. PubMed ID: 32947668 [Abstract] [Full Text] [Related]
11. Assessment of the Phytotoxicity of Metal Oxide Nanoparticles on Two Crop Plants, Maize (Zea mays L.) and Rice (Oryza sativa L.). Yang Z, Chen J, Dou R, Gao X, Mao C, Wang L. Int J Environ Res Public Health; 2015 Nov 30; 12(12):15100-9. PubMed ID: 26633437 [Abstract] [Full Text] [Related]
12. Assessment of the impact of Aluminum on germination, early growth and free proline content in Lactuca sativa L. Silva P, Matos M. Ecotoxicol Environ Saf; 2016 Sep 30; 131():151-6. PubMed ID: 27229755 [Abstract] [Full Text] [Related]
13. Evaluation of the toxic potential of coffee wastewater on seeds, roots and meristematic cells of Lactuca sativa L. Aguiar LL, Andrade-Vieira LF, de Oliveira David JA. Ecotoxicol Environ Saf; 2016 Nov 30; 133():366-72. PubMed ID: 27497783 [Abstract] [Full Text] [Related]
14. Effects of ten antibiotics on seed germination and root elongation in three plant species. Hillis DG, Fletcher J, Solomon KR, Sibley PK. Arch Environ Contam Toxicol; 2011 Feb 30; 60(2):220-32. PubMed ID: 21107831 [Abstract] [Full Text] [Related]
15. Determination of phytotoxicity of soluble elements in soils, based on a bioassay with lettuce (Lactuca sativa L.). Valerio ME, García JF, Peinado FM. Sci Total Environ; 2007 May 25; 378(1-2):63-6. PubMed ID: 17316769 [Abstract] [Full Text] [Related]
16. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Lin D, Xing B. Environ Pollut; 2007 Nov 25; 150(2):243-50. PubMed ID: 17374428 [Abstract] [Full Text] [Related]
17. Effects of a S-metolachlor based herbicide on two plant models: Zea mays L. and Lactuca sativa L. Silva QM, Palmieri MJ, Andrade-Vieira LF. J Toxicol Environ Health A; 2024 Sep 16; 87(18):719-729. PubMed ID: 38884257 [Abstract] [Full Text] [Related]
18. Root response in Pisum sativum and Zea mays under fluoranthene stress: morphological and anatomical traits. Kummerová M, Zezulka Š, Babula P, Váňová L. Chemosphere; 2013 Jan 16; 90(2):665-73. PubMed ID: 23072784 [Abstract] [Full Text] [Related]
19. Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Pokhrel LR, Dubey B. Sci Total Environ; 2013 May 01; 452-453():321-32. PubMed ID: 23532040 [Abstract] [Full Text] [Related]
20. Influence of nanosilver on the efficiency of Pisum sativum crops germination. Barabanov PV, Gerasimov AV, Blinov AV, Kravtsov AA, Kravtsov VA. Ecotoxicol Environ Saf; 2018 Jan 01; 147():715-719. PubMed ID: 28942273 [Abstract] [Full Text] [Related] Page: [Next] [New Search]