These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


114 related items for PubMed ID: 39263774

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Effect of Nanopillars on the Wetting State and Adhesion Characteristics of Molten Aluminum Droplets.
    He D, Rui Z, Lyu X, Zhuo J, Sun H, Dong Y.
    Langmuir; 2023 Oct 03; 39(39):13986-13999. PubMed ID: 37725795
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K, Li Z, Maxey M, Chen S, Karniadakis GE.
    Langmuir; 2019 Feb 12; 35(6):2431-2442. PubMed ID: 30640480
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure.
    Ran C, Ding G, Liu W, Deng Y, Hou W.
    Langmuir; 2008 Sep 16; 24(18):9952-5. PubMed ID: 18702472
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Modeling the Effects of Nanopatterned Surfaces on Wetting States of Droplets.
    Xiao K, Zhao Y, Ouyang G, Li X.
    Nanoscale Res Lett; 2017 Dec 16; 12(1):309. PubMed ID: 28449550
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces: is the dynamic Cassie-Wenzel wetting transition a 2D or 1D affair?
    Bormashenko E, Pogreb R, Whyman G, Erlich M.
    Langmuir; 2007 Jun 05; 23(12):6501-3. PubMed ID: 17497815
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Freezing-Melting Mediated Dewetting Transition for Droplets on Superhydrophobic Surfaces with Condensation.
    Cui J, Wang T, Che Z.
    Langmuir; 2024 Jul 16; 40(28):14685-14696. PubMed ID: 38970799
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Multiple Wetting-Dewetting States of a Water Droplet on Dual-Scale Hierarchical Structured Surfaces.
    Gao Y, Liu Y, Jiang J, Zhu C, Zuhlke C, Alexander D, Francisco JS, Zeng XC.
    JACS Au; 2021 Jul 26; 1(7):955-966. PubMed ID: 34467342
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces.
    Zheng QS, Yu Y, Zhao ZH.
    Langmuir; 2005 Dec 20; 21(26):12207-12. PubMed ID: 16342993
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.