These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
179 related items for PubMed ID: 39265143
1. Atomic Spalling of a van der Waals Nanomembrane. Moon JY, Bae SH, Lee JH. Acc Chem Res; 2024 Oct 01; 57(19):2826-2835. PubMed ID: 39265143 [Abstract] [Full Text] [Related]
3. Protocol for preparing layer-engineered van der Waals materials through atomic spalling. Moon JY, Kim SI, Josline MJ, Kim CY, Kim JS, Kim I, Jung E, Lee JH. STAR Protoc; 2023 Apr 17; 4(2):102228. PubMed ID: 37071528 [Abstract] [Full Text] [Related]
4. van der Waals Layered Materials: Opportunities and Challenges. Duong DL, Yun SJ, Lee YH. ACS Nano; 2017 Dec 26; 11(12):11803-11830. PubMed ID: 29219304 [Abstract] [Full Text] [Related]
5. Atomic Layer Deposition Route to Scalable, Electronic-Grade van der Waals Te Thin Films. Kim C, Hur N, Yang J, Oh S, Yeo J, Jeong HY, Shong B, Suh J. ACS Nano; 2023 Aug 22; 17(16):15776-15786. PubMed ID: 37432767 [Abstract] [Full Text] [Related]
6. Spalling-Induced Liftoff and Transfer of Electronic Films Using a van der Waals Release Layer. Blanton EW, Motala MJ, Prusnick TA, Hilton A, Brown JL, Bhattacharyya A, Krishnamoorthy S, Leedy K, Glavin NR, Snure M. Small; 2021 Oct 22; 17(42):e2102668. PubMed ID: 34541817 [Abstract] [Full Text] [Related]
13. Two-Dimensional Van Der Waals Topological Materials: Preparation, Properties, and Device Applications. Zhang G, Wu H, Zhang L, Yang L, Xie Y, Guo F, Li H, Tao B, Wang G, Zhang W, Chang H. Small; 2022 Nov 22; 18(47):e2204380. PubMed ID: 36135779 [Abstract] [Full Text] [Related]
14. High-order superlattices by rolling up van der Waals heterostructures. Zhao B, Wan Z, Liu Y, Xu J, Yang X, Shen D, Zhang Z, Guo C, Qian Q, Li J, Wu R, Lin Z, Yan X, Li B, Zhang Z, Ma H, Li B, Chen X, Qiao Y, Shakir I, Almutairi Z, Wei F, Zhang Y, Pan X, Huang Y, Ping Y, Duan X, Duan X. Nature; 2021 Mar 22; 591(7850):385-390. PubMed ID: 33731947 [Abstract] [Full Text] [Related]
16. Ultrathin Van der Waals Antiferromagnet CrTe3 for Fabrication of In-Plane CrTe3 /CrTe2 Monolayer Magnetic Heterostructures. Yao J, Wang H, Yuan B, Hu Z, Wu C, Zhao A. Adv Mater; 2022 Jun 22; 34(23):e2200236. PubMed ID: 35419894 [Abstract] [Full Text] [Related]
17. Predicting Van der Waals Heterostructures by a Combined Machine Learning and Density Functional Theory Approach. Willhelm D, Wilson N, Arroyave R, Qian X, Cagin T, Pachter R, Qian X. ACS Appl Mater Interfaces; 2022 Jun 08; 14(22):25907-25919. PubMed ID: 35622945 [Abstract] [Full Text] [Related]
18. First-Principles Simulation and Materials Screening for Spin-Orbit Torque in 2D van der Waals Heterostructures. Wang J, Nikonov DE, Lin H, Kang D, Kim R, Li H, Klimeck G. Small; 2024 Aug 08; 20(33):e2308965. PubMed ID: 38693077 [Abstract] [Full Text] [Related]
19. Revisiting Solution-Based Processing of van der Waals Layered Materials for Electronics. Kim J, Song O, Cho YS, Jung M, Rhee D, Kang J. ACS Mater Au; 2022 Jul 13; 2(4):382-393. PubMed ID: 36855703 [Abstract] [Full Text] [Related]
20. Emergent Multifunctional Magnetic Proximity in van der Waals Layered Heterostructures. Choi EM, Sim KI, Burch KS, Lee YH. Adv Sci (Weinh); 2022 Jul 13; 9(21):e2200186. PubMed ID: 35596612 [Abstract] [Full Text] [Related] Page: [Next] [New Search]