These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


118 related items for PubMed ID: 39265323

  • 1. Impacts of different vehicle emissions on ozone levels in Beijing: Insights into source contributions and formation processes.
    Cao J, Liu J, Cheng Y, Ai S, Li F, Xue T, Zhang Q, Zhu T.
    Environ Int; 2024 Sep; 191():109002. PubMed ID: 39265323
    [Abstract] [Full Text] [Related]

  • 2. Contributions of local emissions and regional background to summertime ozone in central China.
    Su F, Xu Q, Yin S, Wang K, Liu G, Wang P, Kang M, Zhang R, Ying Q.
    J Environ Manage; 2023 Jul 15; 338():117778. PubMed ID: 37019021
    [Abstract] [Full Text] [Related]

  • 3. A case study of surface ozone source contributions in the Seoul metropolitan area using the adjoint of CMAQ.
    Kashfi Yeganeh A, Momeni M, Choi Y, Park J, Jung J.
    J Air Waste Manag Assoc; 2024 Jul 15; 74(7):511-530. PubMed ID: 38809877
    [Abstract] [Full Text] [Related]

  • 4. Formation processes and source contributions of ground-level ozone in urban and suburban Beijing using the WRF-CMAQ modelling system.
    Zhang S, Zhang Z, Li Y, Du X, Qu L, Tang W, Xu J, Meng F.
    J Environ Sci (China); 2023 May 15; 127():753-766. PubMed ID: 36522103
    [Abstract] [Full Text] [Related]

  • 5. Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part II: Air quality projections and the interplay between emissions and climate change.
    Campbell P, Zhang Y, Yan F, Lu Z, Streets D.
    Environ Pollut; 2018 Jul 15; 238():918-930. PubMed ID: 29684896
    [Abstract] [Full Text] [Related]

  • 6. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis.
    Tsimpidi AP, Trail M, Hu Y, Nenes A, Russell AG.
    J Air Waste Manag Assoc; 2012 Oct 15; 62(10):1150-65. PubMed ID: 23155861
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Source apportionment of emissions from light-duty gasoline vehicles and other sources in the United States for ozone and particulate matter.
    Vijayaraghavan K, Lindhjem C, Koo B, DenBleyker A, Tai E, Shah T, Alvarez Y, Yarwood G.
    J Air Waste Manag Assoc; 2016 Feb 15; 66(2):98-119. PubMed ID: 26563640
    [Abstract] [Full Text] [Related]

  • 12. Identifying the dominant driver of elevated surface ozone concentration in North China plain during summertime 2012-2017.
    Cao J, Qiu X, Liu Y, Yan X, Gao J, Peng L.
    Environ Pollut; 2022 May 01; 300():118912. PubMed ID: 35092729
    [Abstract] [Full Text] [Related]

  • 13. Future year ozone source attribution modeling study using CMAQ-ISAM.
    Collet S, Kidokoro T, Karamchandani P, Jung J, Shah T.
    J Air Waste Manag Assoc; 2018 Nov 01; 68(11):1239-1247. PubMed ID: 29999477
    [Abstract] [Full Text] [Related]

  • 14. Impacts of Regulations on Air Quality and Emergency Department Visits in the Atlanta Metropolitan Area, 1999-2013.
    Russell AG, Tolbert P, Henneman L, Abrams J, Liu C, Klein M, Mulholland J, Sarnat SE, Hu Y, Chang HH, Odman T, Strickland MJ, Shen H, Lawal A.
    Res Rep Health Eff Inst; 2018 Apr 01; 2018(195):1-93. PubMed ID: 31883240
    [Abstract] [Full Text] [Related]

  • 15. Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China.
    Liu Y, Song M, Liu X, Zhang Y, Hui L, Kong L, Zhang Y, Zhang C, Qu Y, An J, Ma D, Tan Q, Feng M.
    Environ Pollut; 2020 Feb 01; 257():113599. PubMed ID: 31796324
    [Abstract] [Full Text] [Related]

  • 16. Evaluation of a highly condensed SAPRC chemical mechanism and two emission inventories for ozone source apportionment and emission control strategy assessments in China.
    Kang M, Hu J, Zhang H, Ying Q.
    Sci Total Environ; 2022 Mar 20; 813():151922. PubMed ID: 34826486
    [Abstract] [Full Text] [Related]

  • 17. [Characteristic Analysis and Source Apportionment of VOCs in Urban Areas of Beijing in Summer].
    Meng XL, Sun Y, Liao TT, Zhang C, Zhang CY.
    Huan Jing Ke Xue; 2022 Sep 08; 43(9):4484-4496. PubMed ID: 36096589
    [Abstract] [Full Text] [Related]

  • 18. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO, Lee SR, HEI Health Review Committee.
    Res Rep Health Eff Inst; 2014 Jun 08; (179):3-79. PubMed ID: 25145039
    [Abstract] [Full Text] [Related]

  • 19. A WRF-Chem model-based future vehicle emission control policy simulation and assessment for the Beijing-Tianjin-Hebei region, China.
    Zhang Q, Tong P, Liu M, Lin H, Yun X, Zhang H, Tao W, Liu J, Wang S, Tao S, Wang X.
    J Environ Manage; 2020 Jan 01; 253():109751. PubMed ID: 31675594
    [Abstract] [Full Text] [Related]

  • 20. Dynamic emission characteristics and control strategies of air pollutants from motor vehicles in downtown Beijing, China.
    Shen Y, Wu T, Lian A, Gao J, Peng F, Song G, Wu X, Cui Y, Liu X, Wan Y, Yan J, Xue Y.
    J Environ Sci (China); 2024 Feb 01; 136():637-646. PubMed ID: 37923472
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.