These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Activity dependence of action potential duration in rat supraoptic neurosecretory neurones recorded in vitro. Bourque CW, Renaud LP. J Physiol; 1985 Jun; 363():429-39. PubMed ID: 3926995 [Abstract] [Full Text] [Related]
3. Barium ions induce prolonged plateau depolarizations in neurosecretory neurones of the adult rat supraoptic nucleus. Bourque CW, Brown DA, Renaud LP. J Physiol; 1986 Jun; 375():573-86. PubMed ID: 2432227 [Abstract] [Full Text] [Related]
4. Reduced outward K+ conductances generate depolarizing after-potentials in rat supraoptic nucleus neurones. Li Z, Hatton GI. J Physiol; 1997 Nov 15; 505 ( Pt 1)(Pt 1):95-106. PubMed ID: 9409474 [Abstract] [Full Text] [Related]
5. Mechanisms for signal transformation in lemniscal auditory thalamus. Tennigkeit F, Schwarz DW, Puil E. J Neurophysiol; 1996 Dec 15; 76(6):3597-608. PubMed ID: 8985860 [Abstract] [Full Text] [Related]
6. Endogenous bursting by rat supraoptic neuroendocrine cells is calcium dependent. Andrew RD. J Physiol; 1987 Mar 15; 384():451-65. PubMed ID: 3656152 [Abstract] [Full Text] [Related]
7. Ionic basis for the electroresponsiveness of guinea-pig ventromedial hypothalamic neurones in vitro. Minami T, Oomura Y, Sugimori M. J Physiol; 1986 Nov 15; 380():145-56. PubMed ID: 3612562 [Abstract] [Full Text] [Related]
9. Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells. Storm JF. J Physiol; 1987 Apr 15; 385():733-59. PubMed ID: 2443676 [Abstract] [Full Text] [Related]
10. Transient calcium-dependent potassium current in magnocellular neurosecretory cells of the rat supraoptic nucleus. Bourque CW. J Physiol; 1988 Mar 15; 397():331-47. PubMed ID: 2457699 [Abstract] [Full Text] [Related]
11. Intracellular study of calcium-related events in cat magnocellular neuroendocrine cells. Fagan M, Andrew RD. J Physiol; 1991 Mar 15; 434():337-49. PubMed ID: 2023122 [Abstract] [Full Text] [Related]
12. Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex. Pape HC, Driesang RB. J Neurophysiol; 1998 Jan 15; 79(1):217-26. PubMed ID: 9425193 [Abstract] [Full Text] [Related]
13. Electrophysiology of the mammillary complex in vitro. I. Tuberomammillary and lateral mammillary neurons. Llinás RR, Alonso A. J Neurophysiol; 1992 Oct 15; 68(4):1307-20. PubMed ID: 1279134 [Abstract] [Full Text] [Related]
14. Calcium-dependent potassium conductance in guinea-pig olfactory cortex neurones in vitro. Constanti A, Sim JA. J Physiol; 1987 Jun 15; 387():173-94. PubMed ID: 2443678 [Abstract] [Full Text] [Related]
15. Properties of rat medial septal neurones recorded in vitro. Segal M. J Physiol; 1986 Oct 15; 379():309-30. PubMed ID: 2882020 [Abstract] [Full Text] [Related]
16. In vitro electrophysiology of rat subicular bursting neurons. Mattia D, Kawasaki H, Avoli M. Hippocampus; 1997 Oct 15; 7(1):48-57. PubMed ID: 9138668 [Abstract] [Full Text] [Related]
17. Resting membrane potential and potassium currents in cultured parasympathetic neurones from rat intracardiac ganglia. Xu ZJ, Adams DJ. J Physiol; 1992 Oct 15; 456():405-24. PubMed ID: 1284080 [Abstract] [Full Text] [Related]
18. Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. Nedergaard S, Flatman JA, Engberg I. J Physiol; 1993 Jul 15; 466():727-47. PubMed ID: 8410714 [Abstract] [Full Text] [Related]
19. Oscillatory bursting of phasically firing rat supraoptic neurones in low-Ca2+ medium: Na+ influx, cytosolic Ca2+ and gap junctions. Li Z, Hatton GI. J Physiol; 1996 Oct 15; 496 ( Pt 2)(Pt 2):379-94. PubMed ID: 8910223 [Abstract] [Full Text] [Related]