These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


130 related items for PubMed ID: 39269957

  • 1. Comparative analysis of growth cycles among three weedy Avena species: Insights from field observations.
    Türkseven SG.
    PLoS One; 2024; 19(9):e0307875. PubMed ID: 39269957
    [Abstract] [Full Text] [Related]

  • 2. Influence of soil moisture levels on the growth and reproductive behaviour of Avena fatua and Avena ludoviciana.
    Sahil, Mahajan G, Loura D, Raymont K, Chauhan BS.
    PLoS One; 2020; 15(7):e0234648. PubMed ID: 32645027
    [Abstract] [Full Text] [Related]

  • 3. Biology and management of Avena fatua and Avena ludoviciana: two noxious weed species of agro-ecosystems.
    Bajwa AA, Akhter MJ, Iqbal N, Peerzada AM, Hanif Z, Manalil S, Hashim S, Ali HH, Kebaso L, Frimpong D, Namubiru H, Chauhan BS.
    Environ Sci Pollut Res Int; 2017 Aug; 24(24):19465-19479. PubMed ID: 28766148
    [Abstract] [Full Text] [Related]

  • 4. The world's first glyphosate-resistant case of Avena fatua L. and Avena sterilis ssp. ludoviciana (Durieu) Gillet & Magne and alternative herbicide options for their control.
    Chauhan BS.
    PLoS One; 2022 Aug; 17(1):e0262494. PubMed ID: 35020774
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Estimations and projections of Avena fatua dynamics under multiple management scenarios in crop fields using simplified longitudinal monitoring.
    Matsuhashi S, Asai M, Fukasawa K.
    PLoS One; 2021 Aug; 16(1):e0245217. PubMed ID: 33449954
    [Abstract] [Full Text] [Related]

  • 7. Application of artificial neural networks to classify Avena fatua and Avena sterilis based on seed traits: insights from European Avena populations primarily from the Balkan Region.
    Oveisi M, Sikuljak D, Anđelković AA, Bozic D, Trkulja N, Piri R, Poczai P, Vrbnicanin S.
    BMC Plant Biol; 2024 Jun 12; 24(1):537. PubMed ID: 38867157
    [Abstract] [Full Text] [Related]

  • 8. Prediction of potential invasion of two weeds of the genus Avena in Asia under climate change based on Maxent.
    Wu K, Wang Y, Liu Z, Huo W, Cao J, Zhao G, Zhang FG.
    Sci Total Environ; 2024 Nov 10; 950():175192. PubMed ID: 39111452
    [Abstract] [Full Text] [Related]

  • 9. [Comparative cytogenetic analysis of hexaploid Avena L. species].
    Badaeva ED, Shelukhina OIu, Dedkova OS, Loskutov IG, Pukhal'skiĭ VA.
    Genetika; 2011 Jun 10; 47(6):783-95. PubMed ID: 21866859
    [Abstract] [Full Text] [Related]

  • 10. Tillage and residue burning affects weed populations and seed banks.
    Narwal S, Sindel BM, Jessop RS.
    Commun Agric Appl Biol Sci; 2006 Jun 10; 71(3 Pt A):715-23. PubMed ID: 17390813
    [Abstract] [Full Text] [Related]

  • 11. No fitness cost associated with Asn-2041-Ile mutation in winter wild oat (Avena ludoviciana) seed germination under various environmental conditions.
    Hassanpour-Bourkheili S, Gherekhloo J, Kamkar B, Ramezanpour SS.
    Sci Rep; 2021 Jan 15; 11(1):1572. PubMed ID: 33452441
    [Abstract] [Full Text] [Related]

  • 12. Agricultural adaptation in the native North American weed waterhemp, Amaranthus tuberculatus (Amaranthaceae).
    Waselkov KE, Regenold ND, Lum RC, Olsen KM.
    PLoS One; 2020 Jan 15; 15(9):e0238861. PubMed ID: 32970699
    [Abstract] [Full Text] [Related]

  • 13. Seed germination ecology of Bidens pilosa and its implications for weed management.
    Chauhan BS, Ali HH, Florentine S.
    Sci Rep; 2019 Nov 05; 9(1):16004. PubMed ID: 31690889
    [Abstract] [Full Text] [Related]

  • 14. Differences in Germination of ACCase-Resistant Biotypes Containing Isoleucine-1781-Leucine Mutation and Susceptible Biotypes of Wild Oat (Avena sterilis ssp. ludoviciana).
    Benakashani F, Gonzalez-Andujar JL, Soltani E.
    Plants (Basel); 2021 Oct 30; 10(11):. PubMed ID: 34834713
    [Abstract] [Full Text] [Related]

  • 15. Physiological biosafety assessment of genetically modified canola on weed (Avena sativa).
    Syed K, Shinwari ZK.
    Toxicol Ind Health; 2016 Mar 30; 32(3):558-63. PubMed ID: 24193044
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Benchmark study on glyphosate-resistant cropping systems in the United States. Part 4: Weed management practices and effects on weed populations and soil seedbanks.
    Wilson RG, Young BG, Matthews JL, Weller SC, Johnson WG, Jordan DL, Owen MD, Dixon PM, Shaw DR.
    Pest Manag Sci; 2011 Jul 30; 67(7):771-80. PubMed ID: 21520485
    [Abstract] [Full Text] [Related]

  • 19. Germination and seed persistence of Amaranthus retroflexus and Amaranthus viridis: Two emerging weeds in Australian cotton and other summer crops.
    Khan AM, Mobli A, Werth JA, Chauhan BS.
    PLoS One; 2022 Jul 30; 17(2):e0263798. PubMed ID: 35139125
    [Abstract] [Full Text] [Related]

  • 20. Constitutive redox and phosphoproteome changes in multiple herbicide resistant Avena fatua L. are similar to those of systemic acquired resistance and systemic acquired acclimation.
    Burns EE, Keith BK, Refai MY, Bothner B, Dyer WE.
    J Plant Physiol; 2018 Jan 30; 220():105-114. PubMed ID: 29169105
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.