These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Physiological and Transcriptional Responses of Industrial Rapeseed (Brassica napus) Seedlings to Drought and Salinity Stress. Wang J, Jiao J, Zhou M, Jin Z, Yu Y, Liang M. Int J Mol Sci; 2019 Nov 09; 20(22):. PubMed ID: 31717503 [Abstract] [Full Text] [Related]
23. Transcriptome and Physiological Analysis of Rapeseed Tolerance to Post-Flowering Temperature Increase. Canales J, Verdejo JF, Calderini DF. Int J Mol Sci; 2023 Oct 26; 24(21):. PubMed ID: 37958577 [Abstract] [Full Text] [Related]
26. Catalase (CAT) Gene Family in Rapeseed (Brassica napus L.): Genome-Wide Analysis, Identification, and Expression Pattern in Response to Multiple Hormones and Abiotic Stress Conditions. Raza A, Su W, Gao A, Mehmood SS, Hussain MA, Nie W, Lv Y, Zou X, Zhang X. Int J Mol Sci; 2021 Apr 20; 22(8):. PubMed ID: 33924156 [Abstract] [Full Text] [Related]
27. Phytochrome-interacting factor (PIF) in rapeseed (Brassica napus L.): Genome-wide identification, evolution and expression analyses during abiotic stress, light quality and vernalization. Li W, Liu Y, Wang W, Liu J, Yao M, Guan M, Guan C, He X. Int J Biol Macromol; 2021 Jun 01; 180():14-27. PubMed ID: 33722620 [Abstract] [Full Text] [Related]
28. Systematic Analysis of the BrHAT Gene Family and Physiological Characteristics of Brassica rapa L. Treated with Histone Acetylase and Deacetylase Inhibitors under Low Temperature. Bian L, Fahim AM, Wu J, Liu L, Pu Y, Ma L, Fang Y, Zhang D, Yang G, Wang W, Fan T, Yang X, Wang J, Shi Y, Sun W. Int J Mol Sci; 2024 Aug 24; 25(17):. PubMed ID: 39273148 [Abstract] [Full Text] [Related]
29. Effects of exogenous calcium and calcium inhibitor on physiological characteristics of winter turnip rape (Brassica rapa) under low temperature stress. Junyan W, Qiaowen P, Fahim AM, Lulu Z, Hui G, Lijun L, Gang Y, Wangtian W, Yuanyuan P, Yan F, Li M, Wancang S. BMC Plant Biol; 2024 Oct 09; 24(1):937. PubMed ID: 39385096 [Abstract] [Full Text] [Related]
30. Transcriptome Profile Analysis of Winter Rapeseed (Brassica napus L.) in Response to Freezing Stress, Reveal Potentially Connected Events to Freezing Stress. Pu Y, Liu L, Wu J, Zhao Y, Bai J, Ma L, Yue J, Jin J, Niu Z, Fang Y, Sun W. Int J Mol Sci; 2019 Jun 05; 20(11):. PubMed ID: 31195741 [Abstract] [Full Text] [Related]
31. Rapeseed species and environmental concerns related to loss of seeds of genetically modified oilseed rape in Japan. Nishizawa T, Tamaoki M, Aono M, Kubo A, Saji H, Nakajima N. GM Crops; 2010 Jun 05; 1(3):143-56. PubMed ID: 21844669 [Abstract] [Full Text] [Related]
36. Regional association analysis coupled with transcriptome analyses reveal candidate genes affecting seed oil accumulation in Brassica napus. Yao M, Guan M, Yang Q, Huang L, Xiong X, Jan HU, Voss-Fels KP, Werner CR, He X, Qian W, Snowdon RJ, Guan C, Hua W, Qian L. Theor Appl Genet; 2021 May 05; 134(5):1545-1555. PubMed ID: 33677638 [Abstract] [Full Text] [Related]
37. iTRAQ-based quantitative proteome analysis insights into cold stress of Winter Rapeseed (Brassica rapa L.) grown in the field. Niu Z, Liu L, Pu Y, Ma L, Wu J, Hu F, Fang Y, Li X, Sun W, Wang W, Bai C. Sci Rep; 2021 Dec 06; 11(1):23434. PubMed ID: 34873178 [Abstract] [Full Text] [Related]
38. Research Progress on the Effect of Nitrogen on Rapeseed between Seed Yield and Oil Content and Its Regulation Mechanism. Zhu J, Dai W, Chen B, Cai G, Wu X, Yan G. Int J Mol Sci; 2023 Sep 25; 24(19):. PubMed ID: 37833952 [Abstract] [Full Text] [Related]
40. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in Brassica napus L. Shahid M, Cai G, Zu F, Zhao Q, Qasim MU, Hong Y, Fan C, Zhou Y. Int J Mol Sci; 2019 Apr 23; 20(8):. PubMed ID: 31018533 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]