These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


114 related items for PubMed ID: 39276883

  • 1. Cellulose nano-dispersions enhanced by ultrasound assisted chemical modification drive osteoblast proliferation and differentiation in PVA/HA bone tissue engineering scaffolds.
    Zhu S, Sun H, Mu T, Richel A.
    Int J Biol Macromol; 2024 Nov; 279(Pt 4):135571. PubMed ID: 39276883
    [Abstract] [Full Text] [Related]

  • 2. Fabrication of Mechanically Reinforced Gelatin/Hydroxyapatite Bio-Composite Scaffolds by Core/Shell Nozzle Printing for Bone Tissue Engineering.
    Kim H, Hwangbo H, Koo Y, Kim G.
    Int J Mol Sci; 2020 May 11; 21(9):. PubMed ID: 32403422
    [Abstract] [Full Text] [Related]

  • 3. Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering.
    Shaheen TI, Montaser AS, Li S.
    Int J Biol Macromol; 2019 Jan 11; 121():814-821. PubMed ID: 30342123
    [Abstract] [Full Text] [Related]

  • 4. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering.
    Park M, Lee D, Shin S, Hyun J.
    Colloids Surf B Biointerfaces; 2015 Jun 01; 130():222-8. PubMed ID: 25910635
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Effectiveness of bio-dispersant in homogenizing hydroxyapatite for proliferation and differentiation of osteoblast.
    Tien Lam N, Minh Quan V, Boonrungsiman S, Sukyai P.
    J Colloid Interface Sci; 2022 Apr 01; 611():491-502. PubMed ID: 34973654
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Nanofibrous poly(vinyl alcohol)/chitosan contained carbonated hydroxyapatite nanoparticles scaffold for bone tissue engineering.
    Januariyasa IK, Ana ID, Yusuf Y.
    Mater Sci Eng C Mater Biol Appl; 2020 Feb 01; 107():110347. PubMed ID: 31761152
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering.
    Lu HT, Lu TW, Chen CH, Mi FL.
    Int J Biol Macromol; 2019 May 01; 128():973-984. PubMed ID: 30738901
    [Abstract] [Full Text] [Related]

  • 11. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering.
    Hokmabad VR, Davaran S, Aghazadeh M, Rahbarghazi R, Salehi R, Ramazani A.
    J Biomater Appl; 2019 Mar 01; 33(8):1128-1144. PubMed ID: 30651055
    [Abstract] [Full Text] [Related]

  • 12. Hydroxyapatite-hybridized chitosan/chitin whisker bionanocomposite fibers for bone tissue engineering applications.
    Pangon A, Saesoo S, Saengkrit N, Ruktanonchai U, Intasanta V.
    Carbohydr Polym; 2016 Jun 25; 144():419-27. PubMed ID: 27083834
    [Abstract] [Full Text] [Related]

  • 13. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].
    Wang X, Liu L, Zhang Q.
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb 25; 21(2):120-4. PubMed ID: 17357456
    [Abstract] [Full Text] [Related]

  • 14. Incorporation of microfibrillated cellulose into collagen-hydroxyapatite scaffold for bone tissue engineering.
    He X, Fan X, Feng W, Chen Y, Guo T, Wang F, Liu J, Tang K.
    Int J Biol Macromol; 2018 Aug 25; 115():385-392. PubMed ID: 29673955
    [Abstract] [Full Text] [Related]

  • 15. Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds.
    Kumar A, Lee Y, Kim D, Rao KM, Kim J, Park S, Haider A, Lee DH, Han SS.
    Int J Biol Macromol; 2017 Feb 25; 95():962-973. PubMed ID: 27793679
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application.
    Ju J, Gu Z, Liu X, Zhang S, Peng X, Kuang T.
    Int J Biol Macromol; 2020 Mar 15; 147():1164-1173. PubMed ID: 31751685
    [Abstract] [Full Text] [Related]

  • 19. In Situ Hydroxyapatite Synthesis Enhances Biocompatibility of PVA/HA Hydrogels.
    Chocholata P, Kulda V, Dvorakova J, Supova M, Zaloudkova M, Babuska V.
    Int J Mol Sci; 2021 Aug 28; 22(17):. PubMed ID: 34502243
    [Abstract] [Full Text] [Related]

  • 20. Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering.
    Zhang J, Nie J, Zhang Q, Li Y, Wang Z, Hu Q.
    J Biomater Sci Polym Ed; 2014 Aug 28; 25(1):61-74. PubMed ID: 24053536
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.