These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Impact of deep learning image reconstruction on volumetric accuracy and image quality of pulmonary nodules with different morphologies in low-dose CT. D'hondt L, Franck C, Kellens PJ, Zanca F, Buytaert D, Van Hoyweghen A, Addouli HE, Carpentier K, Niekel M, Spinhoven M, Bacher K, Snoeckx A. Cancer Imaging; 2024 May 09; 24(1):60. PubMed ID: 38720391 [Abstract] [Full Text] [Related]
3. Clinical value of a new generation adaptive statistical iterative reconstruction (ASIR-V) in the diagnosis of pulmonary nodule in low-dose chest CT. Tang H, Liu Z, Hu Z, He T, Li D, Yu N, Jia Y, Shi H. Br J Radiol; 2019 Nov 09; 92(1103):20180909. PubMed ID: 31469289 [Abstract] [Full Text] [Related]
7. A feasibility study of pulmonary nodule detection by ultralow-dose CT with adaptive statistical iterative reconstruction-V technique. Ye K, Zhu Q, Li M, Lu Y, Yuan H. Eur J Radiol; 2019 Oct 09; 119():108652. PubMed ID: 31521879 [Abstract] [Full Text] [Related]
8. Ultra-low-dose CT reconstructed with ASiR-V using SmartmA for pulmonary nodule detection and Lung-RADS classifications compared with low-dose CT. Ye K, Chen M, Li J, Zhu Q, Lu Y, Yuan H. Clin Radiol; 2021 Feb 09; 76(2):156.e1-156.e8. PubMed ID: 33293025 [Abstract] [Full Text] [Related]
10. Improving Image Quality and Nodule Characterization in Ultra-low-dose Lung CT with Deep Learning Image Reconstruction. Ma G, Dou Y, Dang S, Yu N, Guo Y, Han D, Fan Q. Acad Radiol; 2024 Jul 09; 31(7):2944-2952. PubMed ID: 38429189 [Abstract] [Full Text] [Related]
14. Adaptive Statistical Iterative Reconstruction-Applied Ultra-Low-Dose CT with Radiography-Comparable Radiation Dose: Usefulness for Lung Nodule Detection. Yoon HJ, Chung MJ, Hwang HS, Moon JW, Lee KS. Korean J Radiol; 2015 Jul 09; 16(5):1132-41. PubMed ID: 26357505 [Abstract] [Full Text] [Related]
15. Lung nodule detection performance in five observers on computed tomography (CT) with adaptive iterative dose reduction using three-dimensional processing (AIDR 3D) in a Japanese multicenter study: Comparison between ultra-low-dose CT and low-dose CT by receiver-operating characteristic analysis. Nagatani Y, Takahashi M, Murata K, Ikeda M, Yamashiro T, Miyara T, Koyama H, Koyama M, Sato Y, Moriya H, Noma S, Tomiyama N, Ohno Y, Murayama S, investigators of ACTIve study group. Eur J Radiol; 2015 Jul 09; 84(7):1401-12. PubMed ID: 25892051 [Abstract] [Full Text] [Related]
18. Assessment of noise reduction potential and image quality improvement of a new generation adaptive statistical iterative reconstruction (ASIR-V) in chest CT. Tang H, Yu N, Jia Y, Yu Y, Duan H, Han D, Ma G, Ren C, He T. Br J Radiol; 2018 Jan 09; 91(1081):20170521. PubMed ID: 29076347 [Abstract] [Full Text] [Related]
19. Ultra-low dose chest computed tomography: Effect of iterative reconstruction levels on image quality. Afadzi M, Lysvik EK, Andersen HK, Martinsen ACT. Eur J Radiol; 2019 May 09; 114():62-68. PubMed ID: 31005179 [Abstract] [Full Text] [Related]
20. Observer Performance for Detection of Pulmonary Nodules at Chest CT over a Large Range of Radiation Dose Levels. Fletcher JG, Levin DL, Sykes AG, Lindell RM, White DB, Kuzo RS, Suresh V, Yu L, Leng S, Holmes DR, Inoue A, Johnson MP, Carter RE, McCollough CH. Radiology; 2020 Dec 09; 297(3):699-707. PubMed ID: 32990514 [Abstract] [Full Text] [Related] Page: [Next] [New Search]