These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
131 related items for PubMed ID: 39281443
1. High-yield production of 5-keto-D-gluconic acid via regulated fermentation strategy of Gluconobacter oxydans and its conversion to L-(+)-tartaric acid. Sheng Z, Li Y, Wang J. Heliyon; 2024 Sep 15; 10(17):e36527. PubMed ID: 39281443 [Abstract] [Full Text] [Related]
2. [Effects of carbon and nitrogen sources on 5-keto-gluconic acid production]. Tan Z, Wang H, Wei Y, Li Y, Zhong C, Jia S. Sheng Wu Gong Cheng Xue Bao; 2014 Jan 15; 30(1):76-82. PubMed ID: 24818481 [Abstract] [Full Text] [Related]
3. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation. Yuan J, Wu M, Lin J, Yang L. BMC Biotechnol; 2016 May 17; 16(1):42. PubMed ID: 27189063 [Abstract] [Full Text] [Related]
4. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans. Li K, Mao X, Liu L, Lin J, Sun M, Wei D, Yang S. Microb Cell Fact; 2016 Jul 09; 15(1):121. PubMed ID: 27392695 [Abstract] [Full Text] [Related]
5. Screening of thermotolerant Gluconobacter strains for production of 5-keto-D-gluconic acid and disruption of flavin adenine dinucleotide-containing D-gluconate dehydrogenase. Saichana I, Moonmangmee D, Adachi O, Matsushita K, Toyama H. Appl Environ Microbiol; 2009 Jul 09; 75(13):4240-7. PubMed ID: 19411430 [Abstract] [Full Text] [Related]
6. Directional enhancement of 2-keto-gluconic acid production from enzymatic hydrolysate by acetic acid-mediated bio-oxidation with Gluconobacter oxydans. Dai L, Jiang W, Jia R, Zhou X, Xu Y. Bioresour Technol; 2022 Mar 09; 348():126811. PubMed ID: 35131459 [Abstract] [Full Text] [Related]
7. Efficient aerobic fermentation of gluconic acid by high tension oxygen supply strategy with reusable Gluconobacter oxydans HG19 cells. Lian Z, Dai L, Zhang R, Liu Y, Zhou X, Xu Y. Bioprocess Biosyst Eng; 2022 Nov 09; 45(11):1849-1855. PubMed ID: 36149483 [Abstract] [Full Text] [Related]
8. A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-D-gluconic acid. Elfari M, Ha SW, Bremus C, Merfort M, Khodaverdi V, Herrmann U, Sahm H, Görisch H. Appl Microbiol Biotechnol; 2005 Mar 09; 66(6):668-74. PubMed ID: 15735967 [Abstract] [Full Text] [Related]
9. [Optimization of the fermentation conditions for 5-keto-D-gluconic acid production]. Li B, Pan H, Sun W, Cheng Y, Xie Z, Zhang J. Sheng Wu Gong Cheng Xue Bao; 2014 Sep 09; 30(9):1486-90. PubMed ID: 25720164 [Abstract] [Full Text] [Related]
10. Enhancement of 5-keto-d-gluconate production by a recombinant Gluconobacter oxydans using a dissolved oxygen control strategy. Yuan J, Wu M, Lin J, Yang L. J Biosci Bioeng; 2016 Jul 09; 122(1):10-6. PubMed ID: 26896860 [Abstract] [Full Text] [Related]
11. Selective, high conversion of D-glucose to 5-keto-D-gluoconate by Gluconobacter suboxydans. Ano Y, Shinagawa E, Adachi O, Toyama H, Yakushi T, Matsushita K. Biosci Biotechnol Biochem; 2011 Jul 09; 75(3):586-9. PubMed ID: 21389606 [Abstract] [Full Text] [Related]
12. Highly efficient fermentation of 5-keto-D-fructose with Gluconobacter oxydans at different scales. Battling S, Engel T, Herweg E, Niehoff PJ, Pesch M, Scholand T, Schöpping M, Sonntag N, Büchs J. Microb Cell Fact; 2022 Dec 10; 21(1):255. PubMed ID: 36496372 [Abstract] [Full Text] [Related]
13. High-yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans. Merfort M, Herrmann U, Bringer-Meyer S, Sahm H. Appl Microbiol Biotechnol; 2006 Nov 10; 73(2):443-51. PubMed ID: 16820953 [Abstract] [Full Text] [Related]
14. Efficient Production of 2,5-Diketo-D-gluconic Acid by Reducing Browning Levels During Gluconobacter oxydans ATCC 9937 Fermentation. Li G, Shan X, Zeng W, Yu S, Zhang G, Chen J, Zhou J. Front Bioeng Biotechnol; 2022 Nov 10; 10():918277. PubMed ID: 35875491 [Abstract] [Full Text] [Related]
15. Development of efficient 5-ketogluconate production system by Gluconobacter japonicus. Kataoka N, Naoki K, Ano Y, Matsushita K, Yakushi T. Appl Microbiol Biotechnol; 2022 Dec 10; 106(23):7751-7761. PubMed ID: 36271931 [Abstract] [Full Text] [Related]
16. Overexpression of mGDH in Gluconobacter oxydans to improve D-xylonic acid production from corn stover hydrolysate. Mao X, Zhang B, Zhao C, Lin J, Wei D. Microb Cell Fact; 2022 Mar 09; 21(1):35. PubMed ID: 35264166 [Abstract] [Full Text] [Related]
17. High cell density fermentation of Gluconobacter oxydans DSM 2003 for glycolic acid production. Wei G, Yang X, Gan T, Zhou W, Lin J, Wei D. J Ind Microbiol Biotechnol; 2009 Aug 09; 36(8):1029-34. PubMed ID: 19434434 [Abstract] [Full Text] [Related]
18. Efficient production of 2-keto-L-gulonic acid from D-glucose in Gluconobacter oxydans ATCC9937 by mining key enzyme and transporter. Li G, Li D, Zeng W, Qin Z, Chen J, Zhou J. Bioresour Technol; 2023 Sep 09; 384():129316. PubMed ID: 37315626 [Abstract] [Full Text] [Related]
19. Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains. Sainz F, Jesús Torija M, Matsutani M, Kataoka N, Yakushi T, Matsushita K, Mas A. Front Microbiol; 2016 Sep 09; 7():1358. PubMed ID: 27625643 [Abstract] [Full Text] [Related]
20. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation. Merfort M, Herrmann U, Ha SW, Elfari M, Bringer-Meyer S, Görisch H, Sahm H. Biotechnol J; 2006 May 09; 1(5):556-63. PubMed ID: 16892291 [Abstract] [Full Text] [Related] Page: [Next] [New Search]