These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
119 related items for PubMed ID: 39281625
1. Drainage lysimeter based measurement of water requirement and crop coefficient of bread wheat under semi-arid climate of Melkassa, Ethiopia. Bayisa GD, Ayana M, Mekonnen B, Hordofa T, Dinka MO. Heliyon; 2024 Sep 15; 10(17):e36969. PubMed ID: 39281625 [Abstract] [Full Text] [Related]
2. Determination of crop coefficient for chufa crop (Cyperus esculentus L. var. sativus Boeck.) for sustainable irrigation scheduling. Pascual-Seva N, Pascual B. Sci Total Environ; 2021 May 10; 768():144975. PubMed ID: 33736307 [Abstract] [Full Text] [Related]
3. Development of Smart Weighing Lysimeter for Measuring Evapotranspiration and Developing Crop Coefficient for Greenhouse Chrysanthemum. Sagar A, Hasan M, Singh DK, Al-Ansari N, Chakraborty D, Singh MC, Iquebal MA, Kumar A, Malkani P, Vishwakarma DK, Elbeltagi A. Sensors (Basel); 2022 Aug 19; 22(16):. PubMed ID: 36015996 [Abstract] [Full Text] [Related]
4. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China. Liu X, Wang S, Xue H, Singh VP. PLoS One; 2015 Aug 19; 10(10):e0139839. PubMed ID: 26439928 [Abstract] [Full Text] [Related]
5. Enhancing water use efficiency and grain yield of wheat by optimizing irrigation supply in arid and semi-arid regions of Pakistan. Jabeen M, Rashid Ahmed S, Ahmed M. Saudi J Biol Sci; 2022 Feb 19; 29(2):878-885. PubMed ID: 35197755 [Abstract] [Full Text] [Related]
6. Crop coefficient determination and evapotranspiration estimation of watermelon under water deficit in a cold and arid environment. Zhang H, Wang Z, Yu S, Teng A, Zhang C, Lei L, Ba Y, Chen X. Front Plant Sci; 2023 Feb 19; 14():1153835. PubMed ID: 37396646 [Abstract] [Full Text] [Related]
7. Deficit saline water irrigation under reduced tillage and residue mulch improves soil health in sorghum-wheat cropping system in semi-arid region. Soni PG, Basak N, Rai AK, Sundha P, Narjary B, Kumar P, Yadav G, Kumar S, Yadav RK. Sci Rep; 2021 Jan 21; 11(1):1880. PubMed ID: 33479311 [Abstract] [Full Text] [Related]
8. Biochar Stimulated Actual Evapotranspiration and Wheat Productivity under Water Deficit Conditions in Sandy Soil Based on Non-Weighing Lysimeter. Ghanem KZ, Hasham MMA, El-Sheshtawy AA, El-Serafy RS, Sheta MH. Plants (Basel); 2022 Dec 02; 11(23):. PubMed ID: 36501385 [Abstract] [Full Text] [Related]
9. Quantification of water requirement of some major crops under semi-arid climate in Turkey. Aydın Y. PeerJ; 2022 Dec 02; 10():e13696. PubMed ID: 35821896 [Abstract] [Full Text] [Related]
10. Environmental determination of spring wheat yield in a climatic transition zone under global warming. Zhao F, Lei J, Wang R, Zhang Q, Qi Y, Zhang K, Guo Q, Wang H. Int J Biometeorol; 2022 Mar 02; 66(3):481-491. PubMed ID: 35064318 [Abstract] [Full Text] [Related]
11. Planting pattern and nitrogen management strategies: positive effect on yield and quality attributes of Triticum aestivum L. crop. Azam MF, Bayar J, Iqbal B, Ahmad U, Okla MK, Ali N, Alaraidh IA, AbdElgawad H, Jalal A. BMC Plant Biol; 2024 Sep 09; 24(1):845. PubMed ID: 39251892 [Abstract] [Full Text] [Related]
12. Numerical simulation to assess potential groundwater recharge and net groundwater use in a semi-arid region. Dash CJ, Sarangi A, Singh DK, Adhikary PP. Environ Monit Assess; 2019 May 17; 191(6):371. PubMed ID: 31102073 [Abstract] [Full Text] [Related]
13. [Measurement of evapo-transpiration and crop coefficient of irrigated spring wheat in Naiman sandy cropland]. Li Y, Cui J, Zhang T. Ying Yong Sheng Tai Xue Bao; 2003 Jun 17; 14(6):930-4. PubMed ID: 12973999 [Abstract] [Full Text] [Related]
14. Effects of water stress on water use efficiency of irrigated and rainfed wheat in the Loess Plateau, China. Jin N, Ren W, Tao B, He L, Ren Q, Li S, Yu Q. Sci Total Environ; 2018 Nov 15; 642():1-11. PubMed ID: 29886197 [Abstract] [Full Text] [Related]
15. Sustainable crop intensification through surface water irrigation in Bangladesh? A geospatial assessment of landscape-scale production potential. Krupnik TJ, Schulthess U, Ahmed ZU, McDonald AJ. Land use policy; 2017 Jan 15; 60():206-222. PubMed ID: 28050058 [Abstract] [Full Text] [Related]
16. Crop water requirement and irrigation scheduling under climate change scenario, and optimal cropland allocation in lower kulfo catchment. Reta BG, Hatiye SD, Finsa MM. Heliyon; 2024 May 30; 10(10):e31332. PubMed ID: 38803889 [Abstract] [Full Text] [Related]
17. Heavy metal accumulation in soils and grains, and health risks associated with use of treated municipal wastewater in subsurface drip irrigation. Asgari K, Cornelis WM. Environ Monit Assess; 2015 Jul 30; 187(7):410. PubMed ID: 26050062 [Abstract] [Full Text] [Related]
18. Detecting crop water requirement indicators in irrigated agroecosystems from soil water content profiles: An application for a citrus orchard. Segovia-Cardozo DA, Franco L, Provenzano G. Sci Total Environ; 2022 Feb 01; 806(Pt 1):150492. PubMed ID: 34844327 [Abstract] [Full Text] [Related]
19. Balancing crop water requirements through supplemental irrigation under rainfed agriculture in a semi-arid environment. Gebremedhin T, Haile GG, Gebremicael TG, Libsekal H, Reda KW. Heliyon; 2023 Aug 01; 9(8):e18727. PubMed ID: 37560645 [Abstract] [Full Text] [Related]
20. [Modeling evapotranspiration of greenhouse tomato under different water conditions based on the dual crop coefficient method]. Gong XW, Liu H, Sun JS, Ma XJ, Wang WN, Cui YS. Ying Yong Sheng Tai Xue Bao; 2017 Apr 18; 28(4):1255-1264. PubMed ID: 29741323 [Abstract] [Full Text] [Related] Page: [Next] [New Search]