These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


119 related items for PubMed ID: 39286993

  • 21. How droplets pin on solid surfaces.
    Zhang J, Ding W, Hampel U.
    J Colloid Interface Sci; 2023 Jun 15; 640():940-948. PubMed ID: 36907154
    [Abstract] [Full Text] [Related]

  • 22. Drop Retention and Departure in Adiabatic Shear Flow on Structured Superhydrophobic Surfaces.
    Lyons BM, Maynes D, Crockett J, Iverson BD.
    Langmuir; 2024 Sep 10; 40(36):18882-18895. PubMed ID: 39180481
    [Abstract] [Full Text] [Related]

  • 23. Scanning Drop Friction Force Microscopy.
    Hinduja C, Laroche A, Shumaly S, Wang Y, Vollmer D, Butt HJ, Berger R.
    Langmuir; 2022 Dec 06; 38(48):14635-14643. PubMed ID: 36399702
    [Abstract] [Full Text] [Related]

  • 24. Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with Annular Wedge-Shaped Micropillar Arrays.
    Hou H, Wu X, Hu Z, Gao S, Yuan Z.
    Langmuir; 2023 Dec 26; 39(51):18825-18833. PubMed ID: 38096374
    [Abstract] [Full Text] [Related]

  • 25. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces.
    Teisala H, Tuominen M, Aromaa M, Stepien M, Mäkelä JM, Saarinen JJ, Toivakka M, Kuusipalo J.
    Langmuir; 2012 Feb 14; 28(6):3138-45. PubMed ID: 22263866
    [Abstract] [Full Text] [Related]

  • 26. Universal wetting transition of an evaporating water droplet on hydrophobic micro- and nano-structures.
    Bussonnière A, Bigdeli MB, Chueh DY, Liu Q, Chen P, Tsai PA.
    Soft Matter; 2017 Feb 07; 13(5):978-984. PubMed ID: 28091660
    [Abstract] [Full Text] [Related]

  • 27. Droplet Self-Propulsion on Slippery Liquid-Infused Surfaces with Dual-Lubricant Wedge-Shaped Wettability Patterns.
    Pelizzari M, McHale G, Armstrong S, Zhao H, Ledesma-Aguilar R, Wells GG, Kusumaatmaja H.
    Langmuir; 2023 Nov 07; 39(44):15676-15689. PubMed ID: 37874819
    [Abstract] [Full Text] [Related]

  • 28. Dynamic wetting and spreading and the role of topography.
    McHale G, Newton MI, Shirtcliffe NJ.
    J Phys Condens Matter; 2009 Nov 18; 21(46):464122. PubMed ID: 21715886
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Soft Wetting: Droplet Receding Contact Angles on Soft Superhydrophobic Surfaces.
    Jiang Y, Xu Z, Li B, Li J, Guan D.
    Langmuir; 2023 Oct 31; 39(43):15401-15408. PubMed ID: 37857566
    [Abstract] [Full Text] [Related]

  • 31. Toward vanishing droplet friction on repellent surfaces.
    Backholm M, Kärki T, Nurmi HA, Vuckovac M, Turkki V, Lepikko S, Jokinen V, Quéré D, Timonen JVI, Ras RHA.
    Proc Natl Acad Sci U S A; 2024 Apr 23; 121(17):e2315214121. PubMed ID: 38621127
    [Abstract] [Full Text] [Related]

  • 32. In Situ Droplet Microgoniometry Using Optical Microscopy.
    Cha H, Ma J, Kim YS, Li L, Sun L, Tong J, Miljkovic N.
    ACS Nano; 2019 Nov 26; 13(11):13343-13353. PubMed ID: 31596565
    [Abstract] [Full Text] [Related]

  • 33. Dynamics of Droplets Impacting on Aerogel, Liquid Infused, and Liquid-Like Solid Surfaces.
    Dawson J, Coaster S, Han R, Gausden J, Liu H, McHale G, Chen J.
    ACS Appl Mater Interfaces; 2023 Jan 11; 15(1):2301-2312. PubMed ID: 36580541
    [Abstract] [Full Text] [Related]

  • 34. Friction and Adhesion of Microparticle Suspensions on Repellent Surfaces.
    M KR, Misra S, Mitra SK.
    Langmuir; 2020 Nov 17; 36(45):13689-13697. PubMed ID: 33156636
    [Abstract] [Full Text] [Related]

  • 35. Determination of the Sliding Angle of Water Drops on Surfaces from Friction Force Measurements.
    Beitollahpoor M, Farzam M, Pesika NS.
    Langmuir; 2022 Feb 15; 38(6):2132-2136. PubMed ID: 35104147
    [Abstract] [Full Text] [Related]

  • 36. Evaporation of Sessile Droplets on Slippery Liquid-Infused Porous Surfaces (SLIPS).
    Guan JH, Wells GG, Xu B, McHale G, Wood D, Martin J, Stuart-Cole S.
    Langmuir; 2015 Nov 03; 31(43):11781-9. PubMed ID: 26446177
    [Abstract] [Full Text] [Related]

  • 37. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY, Cansoy CE.
    Langmuir; 2009 Dec 15; 25(24):14135-45. PubMed ID: 19630435
    [Abstract] [Full Text] [Related]

  • 38. Advances in the Fabrication and Characterization of Superhydrophobic Surfaces Inspired by the Lotus Leaf.
    Farzam M, Beitollahpoor M, Solomon SE, Ashbaugh HS, Pesika NS.
    Biomimetics (Basel); 2022 Nov 10; 7(4):. PubMed ID: 36412724
    [Abstract] [Full Text] [Related]

  • 39. Apparent Contact Angles on Lubricant-Impregnated Surfaces/SLIPS: From Superhydrophobicity to Electrowetting.
    McHale G, Orme BV, Wells GG, Ledesma-Aguilar R.
    Langmuir; 2019 Mar 19; 35(11):4197-4204. PubMed ID: 30759342
    [Abstract] [Full Text] [Related]

  • 40. Droplet detachment by air flow for microstructured superhydrophobic surfaces.
    Hao P, Lv C, Yao Z.
    Langmuir; 2013 Apr 30; 29(17):5160-6. PubMed ID: 23557076
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.