These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 3928879

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Acetylcholine-evoked potassium and sodium transport in rat lacrimal segments: evidence for a sodium-chloride co-transport system.
    Singh J.
    Q J Exp Physiol; 1988 Sep; 73(5):767-75. PubMed ID: 3231704
    [Abstract] [Full Text] [Related]

  • 5. Effects of acetylcholine and caerulein on 86Rb+ efflux in the mouse pancreas. Evidence for a sodium-potassium-chloride cotransport system.
    Singh J.
    Biochim Biophys Acta; 1984 Aug 08; 775(1):77-85. PubMed ID: 6466663
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Pancreatic acinar cells: the role of calcium in stimulus-secretion coupling.
    Petersen OH, Ueda N.
    J Physiol; 1976 Jan 08; 254(3):583-606. PubMed ID: 815543
    [Abstract] [Full Text] [Related]

  • 8. Pancreatic acinar cells: the acetylcholine equilibrium potential and its ionic dependency.
    Iwatsuki N, Petersen OH.
    J Physiol; 1977 Aug 08; 269(3):735-51. PubMed ID: 894613
    [Abstract] [Full Text] [Related]

  • 9. Activation of potassium transport induced by secretagogues in superfused submaxillary gland segments of rat and mouse.
    Katoh K, Nakasato M, Nishiyama A, Sakai M.
    J Physiol; 1983 Aug 08; 341():371-85. PubMed ID: 6194288
    [Abstract] [Full Text] [Related]

  • 10. Secretion of fluid and amylase in the perfused rat pancreas.
    Petersen OH, Ueda N.
    J Physiol; 1977 Jan 08; 264(3):819-35. PubMed ID: 191595
    [Abstract] [Full Text] [Related]

  • 11. Histamine-evoked potassium release in the mouse and guinea pig pancreas.
    Rosado JA, Tapia JA, García LJ, Salido GM.
    Pancreas; 1996 May 08; 12(4):396-400. PubMed ID: 8740408
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Pancreatic acinar cells: localization of acetylcholine receptors and the importance of chloride and calcium for acetylcholine-evoked depolarization.
    Iwatsuki N, Petersen OH.
    J Physiol; 1977 Aug 08; 269(3):723-33. PubMed ID: 894612
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Acetylcholine-induced membrane potential changes in endothelial cells of rabbit aortic valve.
    Ohashi M, Satoh K, Itoh T.
    Br J Pharmacol; 1999 Jan 08; 126(1):19-26. PubMed ID: 10051116
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. The roles of stored calcium in contractions of cat tracheal smooth muscle produced by electrical stimulation, acetylcholine and high K+.
    Ito Y, Itoh T.
    Br J Pharmacol; 1984 Nov 08; 83(3):667-76. PubMed ID: 6439272
    [Abstract] [Full Text] [Related]

  • 20. Mechanism of action of magnesium on acetylcholine-evoked secretory responses in isolated rat pancreas.
    Francis LP, Lennard R, Singh J.
    Exp Physiol; 1990 Sep 08; 75(5):669-80. PubMed ID: 1700913
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.