These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


114 related items for PubMed ID: 39302707

  • 1. Exploring the Mechanism of 4-Hydroxy-1,3,5-triazine-6-thiol Collector on Depressant-Free Flotation Separation of Galena from Sphalerite.
    Cheng C, Liu M, Qiu Z, Liu S, Yang L, Chen W, Liu G.
    Langmuir; 2024 Oct 01; 40(39):20811-20819. PubMed ID: 39302707
    [Abstract] [Full Text] [Related]

  • 2. Surface chemical studies on sphalerite and galena using extracellular polysaccharides isolated from Bacillus polymyxa.
    Santhiya D, Subramanian S, Natarajan KA.
    J Colloid Interface Sci; 2002 Dec 15; 256(2):237-48. PubMed ID: 12573627
    [Abstract] [Full Text] [Related]

  • 3. Surface Chemical Studies on Sphalerite and Galena Using Bacillus polymyxa.
    Santhiya D, Subramanian S, Natarajan KA.
    J Colloid Interface Sci; 2001 Mar 15; 235(2):289-297. PubMed ID: 11254305
    [Abstract] [Full Text] [Related]

  • 4. Study on the Interaction between Galena and Sphalerite During Grinding Based on the Migration of Surface Components.
    Huang B, Lai H, Deng J, Xu H, Fan G.
    ACS Omega; 2019 Jul 31; 4(7):12489-12497. PubMed ID: 31460368
    [Abstract] [Full Text] [Related]

  • 5. Electrophoretic Mobility Study of the Adsorption of Alkyl Xanthate Ions on Galena and Sphalerite.
    Song S, Lopez-Valdivieso A, Ojeda-Escamilla MC.
    J Colloid Interface Sci; 2001 May 01; 237(1):70-75. PubMed ID: 11334516
    [Abstract] [Full Text] [Related]

  • 6. Correlation of Surface Adsorption and Oxidation with a Floatability Difference of Galena and Pyrite in High-Alkaline Lime Systems.
    Niu X, Ruan R, Xia L, Li L, Sun H, Jia Y, Tan Q.
    Langmuir; 2018 Feb 27; 34(8):2716-2724. PubMed ID: 29377706
    [Abstract] [Full Text] [Related]

  • 7. Microbially induced selective flotation of sphalerite from galena using mineral-adapted strains of Bacillus megaterium.
    Vasanthakumar B, Ravishankar H, Subramanian S.
    Colloids Surf B Biointerfaces; 2013 Dec 01; 112():279-86. PubMed ID: 24001447
    [Abstract] [Full Text] [Related]

  • 8. Towards Understanding the Role of Surface Gas Nanostructures: Effect of Temperature Difference Pretreatment on Wetting and Flotation of Sulfide Minerals and Pb-Zn Ore.
    Mikhlin Y, Karacharov A, Vorobyev S, Romanchenko A, Likhatski M, Antsiferova S, Markosyan S.
    Nanomaterials (Basel); 2020 Jul 12; 10(7):. PubMed ID: 32664665
    [Abstract] [Full Text] [Related]

  • 9. Surface Chemical Studies on Sphalerite and Galena Using Bacillus polymyxa.
    Santhiya D, Subramanian S, Natarajan KA.
    J Colloid Interface Sci; 2001 Mar 15; 235(2):298-309. PubMed ID: 11254306
    [Abstract] [Full Text] [Related]

  • 10. Critical importance of pH and collector type on the flotation of sphalerite and galena from a low-grade lead-zinc ore.
    Foroutan A, Abbas Zadeh Haji Abadi M, Kianinia Y, Ghadiri M.
    Sci Rep; 2021 Feb 04; 11(1):3103. PubMed ID: 33542449
    [Abstract] [Full Text] [Related]

  • 11. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite.
    Chandra AP, Gerson AR.
    Adv Colloid Interface Sci; 2009 Jan 30; 145(1-2):97-110. PubMed ID: 18851843
    [Abstract] [Full Text] [Related]

  • 12. Recovery of sphalerite from a high zinc grade tailing.
    Bagheri B, Vazifeh Mehrabani J, Farrokhpay S.
    J Hazard Mater; 2020 Jan 05; 381():120946. PubMed ID: 31569009
    [Abstract] [Full Text] [Related]

  • 13. Basic studies on the role of components of Bacillus megaterium as flotation biocollectors in sulphide mineral separation.
    Vasanthakumar B, Ravishankar H, Subramanian S.
    Appl Microbiol Biotechnol; 2014 Mar 05; 98(6):2719-28. PubMed ID: 24085394
    [Abstract] [Full Text] [Related]

  • 14. Reexamining the functions of zinc sulfate as a selective depressant in differential sulfide flotation--the role of coagulation.
    Cao M, Liu Q.
    J Colloid Interface Sci; 2006 Sep 15; 301(2):523-31. PubMed ID: 16780863
    [Abstract] [Full Text] [Related]

  • 15. Enhancing the Flotation Separation of Galena and Pyrite in the Presence of Seawater.
    Song N, Yin W, Xie Y, Yao J.
    Langmuir; 2024 Aug 13. PubMed ID: 39136626
    [Abstract] [Full Text] [Related]

  • 16. A novel property of DNA - as a bioflotation reagent in mineral processing.
    Vasanthakumar B, Ravishankar H, Subramanian S.
    PLoS One; 2012 Aug 13; 7(7):e39316. PubMed ID: 22768298
    [Abstract] [Full Text] [Related]

  • 17. Synthesis of 1-(2-Hydroxyphenyl) Dec-2-en-1-One Oxime and Its Flotation and Adsorption Behavior for Malachite.
    Li L, Yang L, Li F.
    Front Chem; 2020 Aug 13; 8():592771. PubMed ID: 33324613
    [Abstract] [Full Text] [Related]

  • 18. Utilization of Phytic Acid as a Selective Depressant for Quartz Activated by Zinc Ions in Smithsonite Flotation.
    Wang M, Jin S.
    Molecules; 2023 Jul 12; 28(14):. PubMed ID: 37513234
    [Abstract] [Full Text] [Related]

  • 19. Thiol-Silylated Cellulose Nanocrystals as Selective Biodepressants in Froth Flotation.
    Ludovici F, Hartmann R, Rudolph M, Liimatainen H.
    ACS Sustain Chem Eng; 2023 Nov 13; 11(45):16176-16184. PubMed ID: 38022739
    [Abstract] [Full Text] [Related]

  • 20. Selective adsorption of a high-performance depressant onto dolomite causing effective flotation separation of magnesite from dolomite.
    Yang B, Wang D, Cao S, Yin W, Xue J, Zhu Z, Fu Y, Yao J.
    J Colloid Interface Sci; 2020 Oct 15; 578():290-303. PubMed ID: 32531559
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.