These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
141 related items for PubMed ID: 3930487
1. Ca2+-activated Na+ fluxes in human red cells. Amiloride sensitivity. Escobales N, Canessa M. J Biol Chem; 1985 Oct 05; 260(22):11914-23. PubMed ID: 3930487 [Abstract] [Full Text] [Related]
2. The effect of intracellular calcium on the sodium pump of human red cells. Brown AM, Lew VL. J Physiol; 1983 Oct 05; 343():455-93. PubMed ID: 6315922 [Abstract] [Full Text] [Related]
3. Kinetics and stoichiometry of the human red cell Na+/H+ exchanger. Semplicini A, Spalvins A, Canessa M. J Membr Biol; 1989 Mar 05; 107(3):219-28. PubMed ID: 2541250 [Abstract] [Full Text] [Related]
4. Calcium transport mechanisms in dog red blood cells studied from measurements of initial flux rates. Altamirano AA, Beaugé L. Cell Calcium; 1985 Dec 05; 6(6):503-25. PubMed ID: 3937600 [Abstract] [Full Text] [Related]
5. An amiloride-sensitive, volume-dependent Na+ transport across the lamprey (Lampetra fluviatilis) erythrocyte membrane. Gusev GP, Sherstobitov AO. Gen Physiol Biophys; 1996 Apr 05; 15(2):129-43. PubMed ID: 8899417 [Abstract] [Full Text] [Related]
6. Differential effects of temperature on three components of passive permeability to potassium in rodent red cells. Hall AC, Willis JS. J Physiol; 1984 Mar 05; 348():629-43. PubMed ID: 6325676 [Abstract] [Full Text] [Related]
7. Sodium transport through the amiloride-sensitive Na-Mg pathway of hamster red cells. Xu W, Willis JS. J Membr Biol; 1994 Sep 05; 141(3):277-87. PubMed ID: 7807526 [Abstract] [Full Text] [Related]
8. Role of calcium in the regulation of sugar transport in the avian erythrocyte: effects of the calcium ionophore, A23187. Bihler I, Charles P, Sawh PC. Cell Calcium; 1982 Aug 05; 3(3):243-62. PubMed ID: 6814760 [Abstract] [Full Text] [Related]
9. Na+-K+ pump activities of high- and low-potassium sheep red cells with internal magnesium and calcium altered by A23187. Fujise H, Lauf PK. J Physiol; 1988 Nov 05; 405():605-14. PubMed ID: 3151371 [Abstract] [Full Text] [Related]
10. Transport parameters and stoichiometry of active calcium ion extrusion in intact human red cells. Sarkadi B, Szász I, Gerlóczy A, Gárdos G. Biochim Biophys Acta; 1977 Jan 04; 464(1):93-107. PubMed ID: 137747 [Abstract] [Full Text] [Related]
11. Chemotactic factor-induced activation of Na+/H+ exchange in human neutrophils. I. Sodium fluxes. Simchowitz L. J Biol Chem; 1985 Oct 25; 260(24):13237-47. PubMed ID: 2997159 [Abstract] [Full Text] [Related]
12. Amiloride-sensitive Na+ transport in human red cells: evidence for a Na/H exchange system. Escobales N, Canessa M. J Membr Biol; 1986 Oct 25; 90(1):21-8. PubMed ID: 3009823 [Abstract] [Full Text] [Related]
13. The ATP4- receptor-operated ion channel of human lymphocytes: inhibition of ion fluxes by amiloride analogs and by extracellular sodium ions. Wiley JS, Chen R, Wiley MJ, Jamieson GP. Arch Biochem Biophys; 1992 Feb 01; 292(2):411-8. PubMed ID: 1370600 [Abstract] [Full Text] [Related]
14. Na+ for H+ exchange in rabbit erythrocytes. Escobales N, Rivera A. J Cell Physiol; 1987 Jul 01; 132(1):73-80. PubMed ID: 3036894 [Abstract] [Full Text] [Related]