These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


114 related items for PubMed ID: 39305781

  • 21. The genomic basis of the Streptococcus thermophilus health-promoting properties.
    Roux E, Nicolas A, Valence F, Siekaniec G, Chuat V, Nicolas J, Le Loir Y, Guédon E.
    BMC Genomics; 2022 Mar 16; 23(1):210. PubMed ID: 35291951
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Pathways for lactose/galactose catabolism by Streptococcus salivarius.
    Chen YY, Betzenhauser MJ, Snyder JA, Burne RA.
    FEMS Microbiol Lett; 2002 Mar 19; 209(1):75-9. PubMed ID: 12007657
    [Abstract] [Full Text] [Related]

  • 25. Low-sugar yogurt making by the co-cultivation of Lactobacillus plantarum WCFS1 with yogurt starter cultures.
    Zhang SS, Xu ZS, Qin LH, Kong J.
    J Dairy Sci; 2020 Apr 19; 103(4):3045-3054. PubMed ID: 32059863
    [Abstract] [Full Text] [Related]

  • 26. Evolution of carbohydrate fraction in carbonated fermented milks as affected by beta-galactosidase activity of starter strains.
    Guetmonde M, Nieves C, Vinderola G, Reinheimer J, de los Reyes-Gavilan CG.
    J Dairy Res; 2002 Feb 19; 69(1):125-37. PubMed ID: 12047103
    [Abstract] [Full Text] [Related]

  • 27. GalR Acts as a Transcriptional Activator of galKT in the Presence of Galactose in Streptococcus pneumoniae.
    Afzal M, Shafeeq S, Manzoor I, Kuipers OP.
    J Mol Microbiol Biotechnol; 2015 Feb 19; 25(6):363-71. PubMed ID: 26544195
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Short communication: Transcriptional response to a large genomic island deletion in the dairy starter culture Streptococcus thermophilus.
    Selle K, Andersen JM, Barrangou R.
    J Dairy Sci; 2019 Sep 19; 102(9):7800-7806. PubMed ID: 31279547
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Comparative Transcriptomic Analysis of Streptococcus thermophilus TH1436 and TH1477 Showing Different Capability in the Use of Galactose.
    Giaretta S, Treu L, Vendramin V, da Silva Duarte V, Tarrah A, Campanaro S, Corich V, Giacomini A.
    Front Microbiol; 2018 Sep 19; 9():1765. PubMed ID: 30131781
    [Abstract] [Full Text] [Related]

  • 32. Technological properties assessment and two component systems distribution of Streptococcus thermophilus strains isolated from fermented milk.
    Hu T, Zhang Y, Cui Y, Zhao C, Jiang X, Zhu X, Wang Y, Qu X.
    Arch Microbiol; 2018 May 19; 200(4):567-580. PubMed ID: 29236144
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Towards enhanced galactose utilization by Lactococcus lactis.
    Neves AR, Pool WA, Solopova A, Kok J, Santos H, Kuipers OP.
    Appl Environ Microbiol; 2010 Nov 19; 76(21):7048-60. PubMed ID: 20817811
    [Abstract] [Full Text] [Related]

  • 35. GAL4 of Saccharomyces cerevisiae activates the lactose-galactose regulon of Kluyveromyces lactis and creates a new phenotype: glucose repression of the regulon.
    Riley MI, Hopper JE, Johnston SA, Dickson RC.
    Mol Cell Biol; 1987 Feb 19; 7(2):780-6. PubMed ID: 3102945
    [Abstract] [Full Text] [Related]

  • 36. Characterization of lactose-fermenting revertants from lactose-negative Streptococcus lactis C2 mutants.
    Cords BR, McKay LL.
    J Bacteriol; 1974 Sep 19; 119(3):830-9. PubMed ID: 4368487
    [Abstract] [Full Text] [Related]

  • 37. Comparative Peptidomic and Metatranscriptomic Analyses Reveal Improved Gamma-Amino Butyric Acid Production Machinery in Levilactobacillus brevis Strain NPS-QW 145 Cocultured with Streptococcus thermophilus Strain ASCC1275 during Milk Fermentation.
    Xiao T, Yan A, Huang JD, Jorgensen EM, Shah NP.
    Appl Environ Microbiol; 2020 Dec 17; 87(1):. PubMed ID: 33067198
    [Abstract] [Full Text] [Related]

  • 38. The potential of species-specific tagatose-6-phosphate (T6P) pathway in Lactobacillus casei group for galactose reduction in fermented dairy foods.
    Wu Q, Shah NP.
    Food Microbiol; 2017 Apr 17; 62():178-187. PubMed ID: 27889146
    [Abstract] [Full Text] [Related]

  • 39. Effect of lactose hydrolysis on the milk-fermenting properties of Lactobacillus delbrueckii ssp. bulgaricus 2038 and Streptococcus thermophilus 1131.
    Yamamoto E, Watanabe R, Ichimura T, Ishida T, Kimura K.
    J Dairy Sci; 2021 Feb 17; 104(2):1454-1464. PubMed ID: 33309355
    [Abstract] [Full Text] [Related]

  • 40. Transcriptional regulation and evolution of lactose genes in the galactose-lactose operon of Lactococcus lactis NCDO2054.
    Vaughan EE, Pridmore RD, Mollet B.
    J Bacteriol; 1998 Sep 17; 180(18):4893-902. PubMed ID: 9733693
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.