These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


114 related items for PubMed ID: 39322104

  • 1. Impact of yeast extract and basal salts medium on 1,4-dioxane biodegradation rates and the microorganisms involved in carbon uptake from 1,4-dioxane.
    Li Z, Cupples AM.
    Environ Pollut; 2024 Dec 01; 362():125014. PubMed ID: 39322104
    [Abstract] [Full Text] [Related]

  • 2. Identification of the phylotypes involved in cis-dichloroethene and 1,4-dioxane biodegradation in soil microcosms.
    Dang H, Cupples AM.
    Sci Total Environ; 2021 Nov 10; 794():148690. PubMed ID: 34198077
    [Abstract] [Full Text] [Related]

  • 3. Anaerobic 1,4-dioxane biodegradation and microbial community analysis in microcosms inoculated with soils or sediments and different electron acceptors.
    Ramalingam V, Cupples AM.
    Appl Microbiol Biotechnol; 2020 May 10; 104(9):4155-4170. PubMed ID: 32170385
    [Abstract] [Full Text] [Related]

  • 4. Occurrence of Rhodococcus sp. RR1 prmA and Rhodococcus jostii RHA1 prmA across microbial communities and their enumeration during 1,4-dioxane biodegradation.
    Eshghdoostkhatami Z, Cupples AM.
    J Microbiol Methods; 2024 Apr 10; 219():106908. PubMed ID: 38403133
    [Abstract] [Full Text] [Related]

  • 5. In silico analysis of soil, sediment and groundwater microbial communities to predict biodegradation potential.
    Cupples AM, Li Z, Wilson FP, Ramalingam V, Kelly A.
    J Microbiol Methods; 2022 Nov 10; 202():106595. PubMed ID: 36208772
    [Abstract] [Full Text] [Related]

  • 6. Enrichment of novel Actinomycetales and the detection of monooxygenases during aerobic 1,4-dioxane biodegradation with uncontaminated and contaminated inocula.
    Ramalingam V, Cupples AM.
    Appl Microbiol Biotechnol; 2020 Mar 10; 104(5):2255-2269. PubMed ID: 31956944
    [Abstract] [Full Text] [Related]

  • 7. 1,4-Dioxane-degrading consortia can be enriched from uncontaminated soils: prevalence of Mycobacterium and soluble di-iron monooxygenase genes.
    He Y, Mathieu J, da Silva MLB, Li M, Alvarez PJJ.
    Microb Biotechnol; 2018 Jan 10; 11(1):189-198. PubMed ID: 28984418
    [Abstract] [Full Text] [Related]

  • 8. 1,4-Dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus.
    Inoue D, Tsunoda T, Sawada K, Yamamoto N, Saito Y, Sei K, Ike M.
    Biodegradation; 2016 Nov 10; 27(4-6):277-286. PubMed ID: 27623820
    [Abstract] [Full Text] [Related]

  • 9. 1,4-Dioxane biodegradation at low temperatures in Arctic groundwater samples.
    Li M, Fiorenza S, Chatham JR, Mahendra S, Alvarez PJ.
    Water Res; 2010 May 10; 44(9):2894-900. PubMed ID: 20199795
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Microbial community characterization and functional gene quantification in RDX-degrading microcosms derived from sediment and groundwater at two naval sites.
    Wilson FP, Cupples AM.
    Appl Microbiol Biotechnol; 2016 Aug 10; 100(16):7297-309. PubMed ID: 27118012
    [Abstract] [Full Text] [Related]

  • 13. Novel aerobic benzene degrading microorganisms identified in three soils by stable isotope probing.
    Xie S, Sun W, Luo C, Cupples AM.
    Biodegradation; 2011 Feb 10; 22(1):71-81. PubMed ID: 20549308
    [Abstract] [Full Text] [Related]

  • 14. Organic carbon effects on aerobic polychlorinated biphenyl removal and bacterial community composition in soils and sediments.
    Luo W, D'Angelo EM, Coyne MS.
    Chemosphere; 2008 Jan 10; 70(3):364-73. PubMed ID: 17870145
    [Abstract] [Full Text] [Related]

  • 15. Structural and Kinetic Characteristics of 1,4-Dioxane-Degrading Bacterial Consortia Containing the Phylum TM7.
    Nam JH, Ventura JS, Yeom IT, Lee Y, Jahng D.
    J Microbiol Biotechnol; 2016 Nov 28; 26(11):1951-1964. PubMed ID: 27470275
    [Abstract] [Full Text] [Related]

  • 16. Biodegradation of 1,4-dioxane in planted and unplanted soil: effect of bioaugmentation with Amycolata sp. CB1190.
    Kelley SL, Aitchison EW, Deshpande M, Schnoor JL, Alvarez PJ.
    Water Res; 2001 Nov 28; 35(16):3791-800. PubMed ID: 12230161
    [Abstract] [Full Text] [Related]

  • 17. Bench-scale biodegradation tests to assess natural attenuation potential of 1,4-dioxane at three sites in California.
    Li M, Van Orden ET, DeVries DJ, Xiong Z, Hinchee R, Alvarez PJ.
    Biodegradation; 2015 Feb 28; 26(1):39-50. PubMed ID: 25280838
    [Abstract] [Full Text] [Related]

  • 18. Identification of metolachlor mineralizing bacteria in aerobic and anaerobic soils using DNA-stable isotope probing.
    Kanissery RG, Welsh A, Gomez A, Connor L, Sims GK.
    Biodegradation; 2018 Apr 28; 29(2):117-128. PubMed ID: 29285669
    [Abstract] [Full Text] [Related]

  • 19. Carbon sources that enable enrichment of 1,4-dioxane-degrading bacteria in landfill leachate.
    Inoue D, Hisada K, Okumura T, Yabuki Y, Yoshida G, Kuroda M, Ike M.
    Biodegradation; 2020 Apr 28; 31(1-2):23-34. PubMed ID: 31520343
    [Abstract] [Full Text] [Related]

  • 20. Burkholderiales participating in pentachlorophenol biodegradation in iron-reducing paddy soil as identified by stable isotope probing.
    Tong H, Hu M, Li F, Chen M, Lv Y.
    Environ Sci Process Impacts; 2015 Jul 28; 17(7):1282-9. PubMed ID: 26051859
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.