These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
112 related items for PubMed ID: 39358562
21. Assessment of water quality using multivariate statistical techniques in the coastal region of Visakhapatnam, India. Pati S, Dash MK, Mukherjee CK, Dash B, Pokhrel S. Environ Monit Assess; 2014 Oct; 186(10):6385-402. PubMed ID: 24880726 [Abstract] [Full Text] [Related]
22. Long-term variations of water quality parameters in the Maroon River, Iran. Tabari H, Marofi S, Ahmadi M. Environ Monit Assess; 2011 Jun; 177(1-4):273-87. PubMed ID: 20700652 [Abstract] [Full Text] [Related]
23. Water quality assessment and its pollution source analysis from spatial and temporal perspectives in small watershed of Sichuan Province, China. Song T, Tu W, Su M, Song H, Chen S, Yang Y, Fan M, Luo X, Li S, Guo J. Environ Monit Assess; 2024 Aug 28; 196(9):856. PubMed ID: 39196401 [Abstract] [Full Text] [Related]
24. A study on water quality parameters estimation for urban rivers based on ground hyperspectral remote sensing technology. Hou Y, Zhang A, Lv R, Zhao S, Ma J, Zhang H, Li Z. Environ Sci Pollut Res Int; 2022 Sep 28; 29(42):63640-63654. PubMed ID: 35460477 [Abstract] [Full Text] [Related]
25. Analysis of spatio-temporal variations of river water quality and construction of a novel cost-effective assessment model: a case study in Hong Kong. Wang Q, Li Z, Xu Y, Li R, Zhang M. Environ Sci Pollut Res Int; 2022 Apr 28; 29(19):28241-28255. PubMed ID: 34988787 [Abstract] [Full Text] [Related]
26. Evaluation of spatial-temporal variations and trends in surface water quality across a rural-suburban-urban interface. Mei K, Liao L, Zhu Y, Lu P, Wang Z, Dahlgren RA, Zhang M. Environ Sci Pollut Res Int; 2014 Apr 28; 21(13):8036-51. PubMed ID: 24659457 [Abstract] [Full Text] [Related]
27. Incorporation of water quality index models with machine learning-based techniques for real-time assessment of aquatic ecosystems. Kim HI, Kim D, Mahdian M, Salamattalab MM, Bateni SM, Noori R. Environ Pollut; 2024 Aug 15; 355():124242. PubMed ID: 38810684 [Abstract] [Full Text] [Related]
28. Trend analysis of a tropical urban river water quality in Malaysia. Othman F, M E AE, Mohamed I. J Environ Monit; 2012 Dec 15; 14(12):3164-73. PubMed ID: 23128415 [Abstract] [Full Text] [Related]
29. Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method. Nong X, Shao D, Zhong H, Liang J. Water Res; 2020 Jul 01; 178():115781. PubMed ID: 32353610 [Abstract] [Full Text] [Related]
30. Assessing water quality in the Pearl River for the last decade based on clustering: Characteristic, evolution and policy implications. Wu J, Cheng SP, He LY, Wang YC, Yue Y, Zeng H, Xu N. Water Res; 2023 Oct 01; 244():120492. PubMed ID: 37598570 [Abstract] [Full Text] [Related]
31. Spatial and temporal variations of water quality in an artificial urban river receiving WWTP effluent in South China. Zhang D, Tao Y, Liu X, Zhou K, Yuan Z, Wu Q, Zhang X. Water Sci Technol; 2016 Oct 01; 73(6):1243-52. PubMed ID: 27003063 [Abstract] [Full Text] [Related]
32. Exploring spatial and seasonal water quality variations in Kelani River, Sri Lanka: a latent variable approach. Wijayaweera N, Gunawardhana LN, Kazama S, Rajapakse L, Patabendige CS, Karunaweera H. Environ Monit Assess; 2024 Oct 17; 196(11):1063. PubMed ID: 39417920 [Abstract] [Full Text] [Related]
33. Predicting in-stream water quality constituents at the watershed scale using machine learning. Adedeji IC, Ahmadisharaf E, Sun Y. J Contam Hydrol; 2022 Dec 17; 251():104078. PubMed ID: 36206579 [Abstract] [Full Text] [Related]
34. Index of biotic integrity based on phytoplankton and water quality index: Do they have a similar pattern on water quality assessment? A study of rivers in Lake Taihu Basin, China. Wu Z, Kong M, Cai Y, Wang X, Li K. Sci Total Environ; 2019 Mar 25; 658():395-404. PubMed ID: 30579197 [Abstract] [Full Text] [Related]
35. Robust machine learning algorithms for predicting coastal water quality index. Uddin MG, Nash S, Mahammad Diganta MT, Rahman A, Olbert AI. J Environ Manage; 2022 Nov 01; 321():115923. PubMed ID: 35988401 [Abstract] [Full Text] [Related]
36. [Characteristics of Total Nitrogen and Total Phosphorus Pollution and Eutrophication Assessment of Secondary River in Urban Chongqing]. Qing XY, Ren YF, Lü ZQ, Wang XK, Pang R, Deng R, Meng L, Ma HY. Huan Jing Ke Xue; 2015 Jul 01; 36(7):2446-52. PubMed ID: 26489310 [Abstract] [Full Text] [Related]
37. Coastal groundwater quality prediction using objective-weighted WQI and machine learning approach. Das CR, Das S. Environ Sci Pollut Res Int; 2024 Mar 01; 31(13):19439-19457. PubMed ID: 38355860 [Abstract] [Full Text] [Related]
38. Hybrid decision tree-based machine learning models for short-term water quality prediction. Lu H, Ma X. Chemosphere; 2020 Jun 01; 249():126169. PubMed ID: 32078849 [Abstract] [Full Text] [Related]
39. Prediction of long-term water quality using machine learning enhanced by Bayesian optimisation. Yan T, Zhou A, Shen SL. Environ Pollut; 2023 Feb 01; 318():120870. PubMed ID: 36526051 [Abstract] [Full Text] [Related]
40. Innovative interpretable AI-guided water quality evaluation with risk adversarial analysis in river streams considering spatial-temporal effects. Lin Z, Lim JY, Oh JM. Environ Pollut; 2024 Jun 01; 350():124015. PubMed ID: 38657892 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]