These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


118 related items for PubMed ID: 39360895

  • 21. Reduction of U(VI) by Fe(II) during the Fe(II)-accelerated transformation of ferrihydrite.
    Boland DD, Collins RN, Glover CJ, Payne TE, Waite TD.
    Environ Sci Technol; 2014 Aug 19; 48(16):9086-93. PubMed ID: 25014507
    [Abstract] [Full Text] [Related]

  • 22. Investigating the effect of ascorbate on the Fe(II)-catalyzed transformation of the poorly crystalline iron mineral ferrihydrite.
    Xiao W, Jones AM, Collins RN, Waite TD.
    Biochim Biophys Acta Gen Subj; 2018 Aug 19; 1862(8):1760-1769. PubMed ID: 29751097
    [Abstract] [Full Text] [Related]

  • 23. Effect of Coexisting Fe(III) (oxyhydr)oxides on Cr(VI) Reduction by Fe(II)-Bearing Clay Minerals.
    Liao W, Ye Z, Yuan S, Cai Q, Tong M, Qian A, Cheng D.
    Environ Sci Technol; 2019 Dec 03; 53(23):13767-13775. PubMed ID: 31702131
    [Abstract] [Full Text] [Related]

  • 24. Three-dimensional transfer of Cr(VI) co-precipitated with ferrihydrite containing silicate and its redistribution and retention during aging.
    Zhu L, Fu F, Tang B.
    Sci Total Environ; 2019 Dec 15; 696():133966. PubMed ID: 31461693
    [Abstract] [Full Text] [Related]

  • 25. Role of an organic carbon-rich soil and Fe(III) reduction in reducing the toxicity and environmental mobility of chromium(VI) at a COPR disposal site.
    Ding W, Stewart DI, Humphreys PN, Rout SP, Burke IT.
    Sci Total Environ; 2016 Jan 15; 541():1191-1199. PubMed ID: 26476060
    [Abstract] [Full Text] [Related]

  • 26. A New Approach for Investigating Iron Mineral Transformations in Soils and Sediments Using 57Fe-Labeled Minerals and 57Fe Mössbauer Spectroscopy.
    Notini L, Schulz K, Kubeneck LJ, Grigg ARC, Rothwell KA, Fantappiè G, ThomasArrigo LK, Kretzschmar R.
    Environ Sci Technol; 2023 Jul 11; 57(27):10008-10018. PubMed ID: 37364169
    [Abstract] [Full Text] [Related]

  • 27. Responses of microbial community composition and function to biochar and irrigation management and the linkage to Cr transformation in paddy soil.
    Xiao W, Ye X, Ye Z, Zhang Q, Zhao S, Chen D, Gao N, Huang M.
    Environ Pollut; 2022 Jul 01; 304():119232. PubMed ID: 35364188
    [Abstract] [Full Text] [Related]

  • 28. Phytic acid inhibits Cr(VI) reduction on Fe(II)-bearing clay minerals: Changing reduction sites and electron transfer pathways.
    Wang S, Wu C, Peng W, Huang D, Liao W, Cui HJ.
    Environ Pollut; 2024 Nov 01; 360():124701. PubMed ID: 39127337
    [Abstract] [Full Text] [Related]

  • 29. Direct and Indirect Electron Transfer Routes of Chromium(VI) Reduction with Different Crystalline Ferric Oxyhydroxides in the Presence of Pyrogenic Carbon.
    Xu Z, Yu Y, Xu X, Tsang DCW, Yao C, Fan J, Zhao L, Qiu H, Cao X.
    Environ Sci Technol; 2022 Feb 01; 56(3):1724-1735. PubMed ID: 34978795
    [Abstract] [Full Text] [Related]

  • 30. Interactions between microbial iron reduction and metal geochemistry: effect of redox cycling on transition metal speciation in iron bearing sediments.
    Cooper DC, Picardal FF, Coby AJ.
    Environ Sci Technol; 2006 Mar 15; 40(6):1884-91. PubMed ID: 16570612
    [Abstract] [Full Text] [Related]

  • 31. Redox Fluctuations Control the Coupled Cycling of Iron and Carbon in Tropical Forest Soils.
    Bhattacharyya A, Campbell AN, Tfaily MM, Lin Y, Kukkadapu RK, Silver WL, Nico PS, Pett-Ridge J.
    Environ Sci Technol; 2018 Dec 18; 52(24):14129-14139. PubMed ID: 30451506
    [Abstract] [Full Text] [Related]

  • 32. Decreased Electron Transfer between Cr(VI) and AH2DS in the Presence of Goethite.
    Tomaszewski EJ, Ginder-Vogel M.
    J Environ Qual; 2018 Jan 18; 47(1):139-146. PubMed ID: 29415106
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Organic Matter from Redoximorphic Soils Accelerates and Sustains Microbial Fe(III) Reduction.
    Fritzsche A, Bosch J, Sander M, Schröder C, Byrne JM, Ritschel T, Joshi P, Maisch M, Meckenstock RU, Kappler A, Totsche KU.
    Environ Sci Technol; 2021 Aug 03; 55(15):10821-10831. PubMed ID: 34288663
    [Abstract] [Full Text] [Related]

  • 36. The role of soil components in synthetic mixtures during the adsorption and speciation changes of Cr(VI): Conjunction of the modeling approach with spectroscopic and isotopic investigations.
    Veselská V, Šillerová H, Göttlicher J, Michálková Z, Siddique JA, Číhalová S, Chrastný V, Steininger R, Mangold S, Komárek M.
    Environ Int; 2019 Jun 03; 127():848-857. PubMed ID: 31075676
    [Abstract] [Full Text] [Related]

  • 37. Ferrous Iron Oxidation under Varying pO2 Levels: The Effect of Fe(III)/Al(III) Oxide Minerals and Organic Matter.
    Chen C, Thompson A.
    Environ Sci Technol; 2018 Jan 16; 52(2):597-606. PubMed ID: 29192502
    [Abstract] [Full Text] [Related]

  • 38. Vinegar residue supported nanoscale zero-valent iron: Remediation of hexavalent chromium in soil.
    Pei G, Zhu Y, Wen J, Pei Y, Li H.
    Environ Pollut; 2020 Jan 16; 256():113407. PubMed ID: 31672374
    [Abstract] [Full Text] [Related]

  • 39. Chromium transformation driven by iron redox cycling in basalt-derived paddy soil with high geological background values.
    Zhang K, Yang Y, Chi W, Chen G, Du Y, Hu S, Li F, Liu T.
    J Environ Sci (China); 2023 Mar 16; 125():470-479. PubMed ID: 36375930
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.