These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


178 related items for PubMed ID: 39367492

  • 1. Computed tomography-based radiomics nomogram for prediction of lympho-vascular and perineural invasion in esophageal squamous cell cancer patients: a retrospective cohort study.
    Tang B, Wu F, Peng L, Leng X, Han Y, Wang Q, Wu J, Orlandini LC.
    Cancer Imaging; 2024 Oct 04; 24(1):131. PubMed ID: 39367492
    [Abstract] [Full Text] [Related]

  • 2. Preoperative Prediction of Perineural Invasion in Oesophageal Squamous Cell Carcinoma Based on CT Radiomics Nomogram: A Multicenter Study.
    Zhou H, Zhou J, Qin C, Tian Q, Zhou S, Qin Y, Wu Y, Shi J, Feng F.
    Acad Radiol; 2024 Apr 04; 31(4):1355-1366. PubMed ID: 37949700
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Prediction of lymphovascular invasion in esophageal squamous cell carcinoma by computed tomography-based radiomics analysis: 2D or 3D ?
    Li Y, Gu X, Yang L, Wang X, Wang Q, Xu X, Zhang A, Yue M, Wang M, Cong M, Ren J, Ren W, Shi G.
    Cancer Imaging; 2024 Oct 17; 24(1):141. PubMed ID: 39420415
    [Abstract] [Full Text] [Related]

  • 5. Preoperative CT radiomics of esophageal squamous cell carcinoma and lymph node to predict nodal disease with a high diagnostic capability.
    Wu YP, Wu L, Ou J, Cao JM, Fu MY, Chen TW, Ouchi E, Hu J.
    Eur J Radiol; 2024 Jan 17; 170():111197. PubMed ID: 37992611
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. A clinical-radiomics model incorporating T2-weighted and diffusion-weighted magnetic resonance images predicts the existence of lymphovascular invasion / perineural invasion in patients with colorectal cancer.
    Zhang K, Ren Y, Xu S, Lu W, Xie S, Qu J, Wang X, Shen B, Pang P, Cai X, Sun J.
    Med Phys; 2021 Sep 17; 48(9):4872-4882. PubMed ID: 34042185
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Potential value of CT-based comprehensive nomogram in predicting occult lymph node metastasis of esophageal squamous cell paralaryngeal nerves: a two-center study.
    Xue T, Wan X, Zhou T, Zou Q, Ma C, Chen J.
    J Transl Med; 2024 Apr 30; 22(1):399. PubMed ID: 38689366
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Integrative nomogram of intratumoral, peritumoral, and lymph node radiomic features for prediction of lymph node metastasis in cT1N0M0 lung adenocarcinomas.
    Das SK, Fang KW, Xu L, Li B, Zhang X, Yang HF.
    Sci Rep; 2021 May 24; 11(1):10829. PubMed ID: 34031529
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Predicting Lymph Node Metastasis Using Computed Tomography Radiomics Analysis in Patients With Resectable Esophageal Squamous Cell Carcinoma.
    Zhao B, Zhu HT, Li XT, Shi YJ, Cao K, Sun YS.
    J Comput Assist Tomogr; 2021 May 24; 45(2):323-329. PubMed ID: 33512851
    [Abstract] [Full Text] [Related]

  • 18. A machine learning radiomics based on enhanced computed tomography to predict neoadjuvant immunotherapy for resectable esophageal squamous cell carcinoma.
    Wang JL, Tang LS, Zhong X, Wang Y, Feng YJ, Zhang Y, Liu JY.
    Front Immunol; 2024 May 24; 15():1405146. PubMed ID: 38947338
    [Abstract] [Full Text] [Related]

  • 19. Influence of Lymphangio vascular (V) and perineural (N) invasion on survival of patients with resected esophageal squamous cell carcinoma (ESCC): a single-center retrospective study.
    Xie C, Chen Z, Xu J, Meng Z, Huang Z, Lin J.
    PeerJ; 2022 May 24; 10():e12974. PubMed ID: 35256918
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.