These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


144 related items for PubMed ID: 39368476

  • 1. A protein blueprint of the diatom CO2-fixing organelle.
    Nam O, Musiał S, Demulder M, McKenzie C, Dowle A, Dowson M, Barrett J, Blaza JN, Engel BD, Mackinder LCM.
    Cell; 2024 Oct 17; 187(21):5935-5950.e18. PubMed ID: 39368476
    [Abstract] [Full Text] [Related]

  • 2. Diatom pyrenoids are encased in a protein shell that enables efficient CO2 fixation.
    Shimakawa G, Demulder M, Flori S, Kawamoto A, Tsuji Y, Nawaly H, Tanaka A, Tohda R, Ota T, Matsui H, Morishima N, Okubo R, Wietrzynski W, Lamm L, Righetto RD, Uwizeye C, Gallet B, Jouneau PH, Gerle C, Kurisu G, Finazzi G, Engel BD, Matsuda Y.
    Cell; 2024 Oct 17; 187(21):5919-5934.e19. PubMed ID: 39357521
    [Abstract] [Full Text] [Related]

  • 3. A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle.
    Mackinder LC, Meyer MT, Mettler-Altmann T, Chen VK, Mitchell MC, Caspari O, Freeman Rosenzweig ES, Pallesen L, Reeves G, Itakura A, Roth R, Sommer F, Geimer S, Mühlhaus T, Schroda M, Goodenough U, Stitt M, Griffiths H, Jonikas MC.
    Proc Natl Acad Sci U S A; 2016 May 24; 113(21):5958-63. PubMed ID: 27166422
    [Abstract] [Full Text] [Related]

  • 4. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum.
    Kikutani S, Nakajima K, Nagasato C, Tsuji Y, Miyatake A, Matsuda Y.
    Proc Natl Acad Sci U S A; 2016 Aug 30; 113(35):9828-33. PubMed ID: 27531955
    [Abstract] [Full Text] [Related]

  • 5. The pyrenoid: the eukaryotic CO2-concentrating organelle.
    He S, Crans VL, Jonikas MC.
    Plant Cell; 2023 Sep 01; 35(9):3236-3259. PubMed ID: 37279536
    [Abstract] [Full Text] [Related]

  • 6. The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms.
    Young JN, Hopkinson BM.
    J Exp Bot; 2017 Jun 01; 68(14):3751-3762. PubMed ID: 28645158
    [Abstract] [Full Text] [Related]

  • 7. Pyrenoids: CO2-fixing phase separated liquid organelles.
    Barrett J, Girr P, Mackinder LCM.
    Biochim Biophys Acta Mol Cell Res; 2021 Apr 01; 1868(5):118949. PubMed ID: 33421532
    [Abstract] [Full Text] [Related]

  • 8. Pyrenoid proteomics reveals independent evolution of the CO2-concentrating organelle in chlorarachniophytes.
    Moromizato R, Fukuda K, Suzuki S, Motomura T, Nagasato C, Hirakawa Y.
    Proc Natl Acad Sci U S A; 2024 Mar 05; 121(10):e2318542121. PubMed ID: 38408230
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. A Spatial Interactome Reveals the Protein Organization of the Algal CO2-Concentrating Mechanism.
    Mackinder LCM, Chen C, Leib RD, Patena W, Blum SR, Rodman M, Ramundo S, Adams CM, Jonikas MC.
    Cell; 2017 Sep 21; 171(1):133-147.e14. PubMed ID: 28938113
    [Abstract] [Full Text] [Related]

  • 11. Rubisco proton production can drive the elevation of CO2 within condensates and carboxysomes.
    Long BM, Förster B, Pulsford SB, Price GD, Badger MR.
    Proc Natl Acad Sci U S A; 2021 May 04; 118(18):. PubMed ID: 33931502
    [Abstract] [Full Text] [Related]

  • 12. The Eukaryotic CO2-Concentrating Organelle Is Liquid-like and Exhibits Dynamic Reorganization.
    Freeman Rosenzweig ES, Xu B, Kuhn Cuellar L, Martinez-Sanchez A, Schaffer M, Strauss M, Cartwright HN, Ronceray P, Plitzko JM, Förster F, Wingreen NS, Engel BD, Mackinder LCM, Jonikas MC.
    Cell; 2017 Sep 21; 171(1):148-162.e19. PubMed ID: 28938114
    [Abstract] [Full Text] [Related]

  • 13. Unicellular C4 photosynthesis in a marine diatom.
    Reinfelder JR, Kraepiel AM, Morel FM.
    Nature; 2000 Oct 26; 407(6807):996-9. PubMed ID: 11069177
    [Abstract] [Full Text] [Related]

  • 14. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms.
    Young JN, Heureux AM, Sharwood RE, Rickaby RE, Morel FM, Whitney SM.
    J Exp Bot; 2016 May 26; 67(11):3445-56. PubMed ID: 27129950
    [Abstract] [Full Text] [Related]

  • 15. Advances in the bacterial organelles for CO2 fixation.
    Liu LN.
    Trends Microbiol; 2022 Jun 26; 30(6):567-580. PubMed ID: 34802870
    [Abstract] [Full Text] [Related]

  • 16. The structural basis of Rubisco phase separation in the pyrenoid.
    He S, Chou HT, Matthies D, Wunder T, Meyer MT, Atkinson N, Martinez-Sanchez A, Jeffrey PD, Port SA, Patena W, He G, Chen VK, Hughson FM, McCormick AJ, Mueller-Cajar O, Engel BD, Yu Z, Jonikas MC.
    Nat Plants; 2020 Dec 26; 6(12):1480-1490. PubMed ID: 33230314
    [Abstract] [Full Text] [Related]

  • 17. A Rubisco-binding protein is required for normal pyrenoid number and starch sheath morphology in Chlamydomonas reinhardtii.
    Itakura AK, Chan KX, Atkinson N, Pallesen L, Wang L, Reeves G, Patena W, Caspari O, Roth R, Goodenough U, McCormick AJ, Griffiths H, Jonikas MC.
    Proc Natl Acad Sci U S A; 2019 Sep 10; 116(37):18445-18454. PubMed ID: 31455733
    [Abstract] [Full Text] [Related]

  • 18. Incorporation of Functional Rubisco Activases into Engineered Carboxysomes to Enhance Carbon Fixation.
    Chen T, Fang Y, Jiang Q, Dykes GF, Lin Y, Price GD, Long BM, Liu LN.
    ACS Synth Biol; 2022 Jan 21; 11(1):154-161. PubMed ID: 34664944
    [Abstract] [Full Text] [Related]

  • 19. Mechanisms of carbon dioxide acquisition and CO2 sensing in marine diatoms: a gateway to carbon metabolism.
    Matsuda Y, Hopkinson BM, Nakajima K, Dupont CL, Tsuji Y.
    Philos Trans R Soc Lond B Biol Sci; 2017 Sep 05; 372(1728):. PubMed ID: 28717013
    [Abstract] [Full Text] [Related]

  • 20. CO2 -fixing liquid droplets: Towards a dissection of the microalgal pyrenoid.
    Wunder T, Oh ZG, Mueller-Cajar O.
    Traffic; 2019 Jun 05; 20(6):380-389. PubMed ID: 31001862
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.