These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
136 related items for PubMed ID: 39372011
1. HNTs Improve Flame Retardant and Thermal Insulation of the PVA/CA Composite Aerogel. Yang T, Xu J, Lv S. ACS Omega; 2024 Oct 01; 9(39):40608-40617. PubMed ID: 39372011 [Abstract] [Full Text] [Related]
2. Freeze-Cast MIL-53(Al) Porous Materials with High Thermal Insulation and Flame Retardant Properties. Che Y, Li W, Wang C, Zhang X, Guo Z, Ibragimov AB, Gao J. Inorg Chem; 2024 Sep 23; 63(38):17828-17835. PubMed ID: 39258888 [Abstract] [Full Text] [Related]
3. Highly Efficient Flame-Retardant and Enhanced PVA-Based Composite Aerogels through Interpenetrating Cross-Linking Networks. Wu N, Deng S, Wang F, Wang M, Xia M, Cui H, Jia H. Polymers (Basel); 2023 Jan 27; 15(3):. PubMed ID: 36771958 [Abstract] [Full Text] [Related]
4. Thermal Insulation and Flame Retardancy of the Hydroxyapatite Nanorods/Sodium Alginate Composite Aerogel with a Double-Crosslinked Structure. Zhu J, Li X, Li D, Jiang C. ACS Appl Mater Interfaces; 2022 Oct 12; 14(40):45822-45831. PubMed ID: 36166410 [Abstract] [Full Text] [Related]
6. Integration of N- and P- elements in sodium alginate aerogels for efficient flame retardant and thermal insulating properties. Zhan H, Liu J, Wang P, Wang C, Wang Z, Chen M, Zhu X, Fu B. Int J Biol Macromol; 2024 Jul 12; 273(Pt 2):132643. PubMed ID: 38823751 [Abstract] [Full Text] [Related]
7. Highly efficient flame-retardant and low-smoke-toxicity poly(vinyl alcohol)/alginate/ montmorillonite composite aerogels by two-step crosslinking strategy. Wu N, Niu F, Lang W, Xia M. Carbohydr Polym; 2019 Oct 01; 221():221-230. PubMed ID: 31227162 [Abstract] [Full Text] [Related]
8. Novel aerogels based on supramolecular G-quadruplex assembly with intrinsic flame retardancy and thermal insulation. Yang L, Zhang H, Wang C, Jiao Y, Pang X, Xu J, Ma H. J Colloid Interface Sci; 2024 Oct 15; 672():618-630. PubMed ID: 38861849 [Abstract] [Full Text] [Related]
10. Anisotropic composite aerogel with thermal insulation and flame retardancy from cellulose nanofibers, calcium alginate and boric acid. Zhu J, Wang Y, Zhao X, Li N, Guo X, Zhao L, Yin Y. Int J Biol Macromol; 2024 May 15; 267(Pt 1):131450. PubMed ID: 38588838 [Abstract] [Full Text] [Related]
11. Double cross-linked biomass aerogels with enhanced mechanical strength and flame retardancy for construction thermal insulation. Gong L, An X, Ma C, Wang R, Zhou X, Liu C, Li N, Liu Z, Li X. Int J Biol Macromol; 2024 Nov 15; 281(Pt 1):136304. PubMed ID: 39370080 [Abstract] [Full Text] [Related]
12. Ice-Template Crosslinked PVA Aerogels Modified with Tannic Acid and Sodium Alginate. De la Cruz LG, Abt T, León N, Wang L, Sánchez-Soto M. Gels; 2022 Jul 05; 8(7):. PubMed ID: 35877504 [Abstract] [Full Text] [Related]
13. Cogel Strategy for the Preparation of a "Thorn"-Like Porous Halloysite/Gelatin Composite Aerogel with Excellent Mechanical Properties and Thermal Insulation. Zhao F, Liu H, Li H, Cao Y, Hua X, Ge S, He Y, Jiang C, He D. ACS Appl Mater Interfaces; 2022 Apr 20; 14(15):17763-17773. PubMed ID: 35384643 [Abstract] [Full Text] [Related]
14. Research on the Flame Retardancy Properties and Mechanism of Modified Asphalt with Halloysite Nanotubes and Conventional Flame Retardant. Tan Y, He Z, Li X, Jiang B, Li J, Zhang Y. Materials (Basel); 2020 Oct 12; 13(20):. PubMed ID: 33053695 [Abstract] [Full Text] [Related]
15. Efficient approach to improving the flame retardancy of poly(vinyl alcohol)/clay aerogels: incorporating piperazine-modified ammonium polyphosphate. Wang YT, Liao SF, Shang K, Chen MJ, Huang JQ, Wang YZ, Schiraldi DA. ACS Appl Mater Interfaces; 2015 Jan 28; 7(3):1780-6. PubMed ID: 25588129 [Abstract] [Full Text] [Related]
16. Polyvinyl alcohol flame retardant film based on halloysite nanotubes, chitosan and phytic acid with strong mechanical and anti-ultraviolet properties. Zhao Q, Cheng X, Kang J, Kong L, Zhao X, He X, Li J. Int J Biol Macromol; 2023 Aug 15; 246():125682. PubMed ID: 37406910 [Abstract] [Full Text] [Related]
17. A facile strategy for constructing lightweight, fire safety and compression resistance poly(vinylalcohol) aerogels with highly-efficient expansible graphene oxide/layered double hydroxides hybrid synergistic flame retardant. Hong X, Zheng Y, Shi Y, Zheng W, Lin F, Xiong L. J Colloid Interface Sci; 2023 Nov 15; 650(Pt A):686-700. PubMed ID: 37441962 [Abstract] [Full Text] [Related]
18. Ultralight and Hydrophobic Palygorskite-based Aerogels with Prominent Thermal Insulation and Flame Retardancy. Jin H, Zhou X, Xu T, Dai C, Gu Y, Yun S, Hu T, Guan G, Chen J. ACS Appl Mater Interfaces; 2020 Mar 11; 12(10):11815-11824. PubMed ID: 32092256 [Abstract] [Full Text] [Related]
19. Facile Construction of Flame-Resistant and Thermal-Insulating Sodium Alginate Aerogel Incorporating N- and P-Elements. Liu J, Zhan H, Song J, Wang C, Zhao T, Fu B. Polymers (Basel); 2024 Oct 04; 16(19):. PubMed ID: 39408524 [Abstract] [Full Text] [Related]
20. Lightweight, ultrahigh-strength and flame-retardant cellulose aerogel crosslinked with a reactive P/N-rich curdlan derivative. Tu J, Mao T, Xie S, Xiao H, Wang P. Int J Biol Macromol; 2024 Nov 04; 281(Pt 2):135991. PubMed ID: 39414534 [Abstract] [Full Text] [Related] Page: [Next] [New Search]