These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 39385086

  • 1. Transcriptomic changes in the PacC transcription factor deletion mutant of the plant pathogenic fungus Botrytis cinerea under acidic and neutral conditions.
    Rascle C, Malbert B, Goncalves I, Choquer M, Bruel C, Poussereau N.
    BMC Genom Data; 2024 Oct 09; 25(1):87. PubMed ID: 39385086
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. The GATA transcription factor BcWCL2 regulates citric acid secretion to maintain redox homeostasis and full virulence in Botrytis cinerea.
    Ren W, Qian C, Ren D, Cai Y, Deng Z, Zhang N, Wang C, Wang Y, Zhu P, Xu L.
    mBio; 2024 Jul 17; 15(7):e0013324. PubMed ID: 38814088
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in Botrytis Cinerea.
    Vasquez-Montaño E, Hoppe G, Vega A, Olivares-Yañez C, Canessa P.
    mBio; 2020 Aug 04; 11(4):. PubMed ID: 32753496
    [Abstract] [Full Text] [Related]

  • 7. Recent Advances in the Study of the Plant Pathogenic Fungus Botrytis cinerea and its Interaction with the Environment.
    Castillo L, Plaza V, Larrondo LF, Canessa P.
    Curr Protein Pept Sci; 2017 Aug 04; 18(10):976-989. PubMed ID: 27526927
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Botrytis cinerea Transcription Factor BcXyr1 Regulates (Hemi-)Cellulase Production and Fungal Virulence.
    Ma L, Liu T, Zhang K, Shi H, Zhang L, Zou G, Sharon A.
    mSystems; 2022 Dec 20; 7(6):e0104222. PubMed ID: 36468854
    [Abstract] [Full Text] [Related]

  • 12. Proteomic analysis of mycelium and secretome of different Botrytis cinerea wild-type strains.
    González-Fernández R, Aloria K, Valero-Galván J, Redondo I, Arizmendi JM, Jorrín-Novo JV.
    J Proteomics; 2014 Jan 31; 97():195-221. PubMed ID: 23811051
    [Abstract] [Full Text] [Related]

  • 13. Transcriptome profiling of Botrytis cinerea conidial germination reveals upregulation of infection-related genes during the prepenetration stage.
    Leroch M, Kleber A, Silva E, Coenen T, Koppenhöfer D, Shmaryahu A, Valenzuela PD, Hahn M.
    Eukaryot Cell; 2013 Apr 31; 12(4):614-26. PubMed ID: 23417562
    [Abstract] [Full Text] [Related]

  • 14. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen.
    Choquer M, Fournier E, Kunz C, Levis C, Pradier JM, Simon A, Viaud M.
    FEMS Microbiol Lett; 2007 Dec 31; 277(1):1-10. PubMed ID: 17986079
    [Abstract] [Full Text] [Related]

  • 15. pH controls both transcription and post-translational processing of the protease BcACP1 in the phytopathogenic fungus Botrytis cinerea.
    Rolland S, Bruel C, Rascle C, Girard V, Billon-Grand G, Poussereau N.
    Microbiology (Reading); 2009 Jun 31; 155(Pt 6):2097-2105. PubMed ID: 19359322
    [Abstract] [Full Text] [Related]

  • 16. Cyclophilin BcCyp2 Regulates Infection-Related Development to Facilitate Virulence of the Gray Mold Fungus Botrytis cinerea.
    Sun J, Sun CH, Chang HW, Yang S, Liu Y, Zhang MZ, Hou J, Zhang H, Li GH, Qin QM.
    Int J Mol Sci; 2021 Feb 08; 22(4):. PubMed ID: 33567582
    [Abstract] [Full Text] [Related]

  • 17. Genome-Wide Characterization of Light-Regulated Gene Expression in Botrytis cinerea Reveals Underlying Complex Photobiology.
    Pérez-Lara G, Olivares-Yañez C, van Bakel H, Larrondo LF, Canessa P.
    Int J Mol Sci; 2023 May 13; 24(10):. PubMed ID: 37240051
    [Abstract] [Full Text] [Related]

  • 18. Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening.
    Kelloniemi J, Trouvelot S, Héloir MC, Simon A, Dalmais B, Frettinger P, Cimerman A, Fermaud M, Roudet J, Baulande S, Bruel C, Choquer M, Couvelard L, Duthieuw M, Ferrarini A, Flors V, Le Pêcheur P, Loisel E, Morgant G, Poussereau N, Pradier JM, Rascle C, Trdá L, Poinssot B, Viaud M.
    Mol Plant Microbe Interact; 2015 Nov 13; 28(11):1167-80. PubMed ID: 26267356
    [Abstract] [Full Text] [Related]

  • 19. Transcriptome analysis and functional validation reveal a novel gene, BcCGF1, that enhances fungal virulence by promoting infection-related development and host penetration.
    Zhang MZ, Sun CH, Liu Y, Feng HQ, Chang HW, Cao SN, Li GH, Yang S, Hou J, Zhu-Salzman K, Zhang H, Qin QM.
    Mol Plant Pathol; 2020 Jun 13; 21(6):834-853. PubMed ID: 32301267
    [Abstract] [Full Text] [Related]

  • 20. Molecular analysis of the early interaction between the grapevine flower and Botrytis cinerea reveals that prompt activation of specific host pathways leads to fungus quiescence.
    Haile ZM, Pilati S, Sonego P, Malacarne G, Vrhovsek U, Engelen K, Tudzynski P, Zottini M, Baraldi E, Moser C.
    Plant Cell Environ; 2017 Aug 13; 40(8):1409-1428. PubMed ID: 28239986
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.