These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
244 related items for PubMed ID: 39396517
1. Acidophilic sulphate-reducing bacteria: Diversity, ecophysiology, and applications. Valdez-Nuñez LF, Kappler A, Ayala-Muñoz D, Chávez IJ, Mansor M. Environ Microbiol Rep; 2024 Oct; 16(5):e70019. PubMed ID: 39396517 [Abstract] [Full Text] [Related]
6. Distribution of Acidophilic Microorganisms in Natural and Man-made Acidic Environments. Hedrich S, Schippers A. Curr Issues Mol Biol; 2021 Oct; 40():25-48. PubMed ID: 32159522 [Abstract] [Full Text] [Related]
7. Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing bacteria. Ňancucheo I, Rowe OF, Hedrich S, Johnson DB. FEMS Microbiol Lett; 2016 May; 363(10):. PubMed ID: 27036143 [Abstract] [Full Text] [Related]
8. Stable isotope fractionation related to technically enhanced bacterial sulphate degradation in lignite mining sediments. Knöller K, Jeschke C, Simon A, Gast M, Hoth N. Isotopes Environ Health Stud; 2012 May; 48(1):76-88. PubMed ID: 22092249 [Abstract] [Full Text] [Related]
10. Diversity and activity of sulphur-oxidizing bacteria and sulphate-reducing bacteria in landfill cover soils. Xia FF, Su Y, Wei XM, He YH, Wu ZC, Ghulam A, He R. Lett Appl Microbiol; 2014 Jul; 59(1):26-34. PubMed ID: 24576086 [Abstract] [Full Text] [Related]
12. Microbial diversity involved in iron and cryptic sulfur cycling in the ferruginous, low-sulfate waters of Lake Pavin. Berg JS, Jézéquel D, Duverger A, Lamy D, Laberty-Robert C, Miot J. PLoS One; 2019 Jul; 14(2):e0212787. PubMed ID: 30794698 [Abstract] [Full Text] [Related]
13. A comparison of carbon/energy and complex nitrogen sources for bacterial sulphate-reduction: potential applications to bioprecipitation of toxic metals as sulphides. White C, Gadd GM. J Ind Microbiol; 1996 Aug; 17(2):116-23. PubMed ID: 8987895 [Abstract] [Full Text] [Related]
14. Vegetation successfully prevents oxidization of sulfide minerals in mine tailings. Li Y, Sun Q, Zhan J, Yang Y, Wang D. J Environ Manage; 2016 Jul 15; 177():153-60. PubMed ID: 27093236 [Abstract] [Full Text] [Related]
15. Importance of different physiological groups of iron reducing microorganisms in an acidic mining lake remediation experiment. Porsch K, Meier J, Kleinsteuber S, Wendt-Potthoff K. Microb Ecol; 2009 May 15; 57(4):701-17. PubMed ID: 19277769 [Abstract] [Full Text] [Related]
17. Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Galushko A, Minz D, Schink B, Widdel F. Environ Microbiol; 1999 Oct 15; 1(5):415-20. PubMed ID: 11207761 [Abstract] [Full Text] [Related]
18. Microbial sulphate reduction at a low pH. Koschorreck M. FEMS Microbiol Ecol; 2008 Jun 15; 64(3):329-42. PubMed ID: 18445022 [Abstract] [Full Text] [Related]
19. Metagenome-Assembled Genomes of Novel Taxa from an Acid Mine Drainage Environment. Grettenberger CL, Hamilton TL. Appl Environ Microbiol; 2021 Aug 11; 87(17):e0077221. PubMed ID: 34161177 [Abstract] [Full Text] [Related]
20. Enhancement of sulphide production in anaerobic packed bed bench-scale biofilm reactors by sulphate reducing bacteria. Alvarez MT, Pozzo T, Mattiasson B. Biotechnol Lett; 2006 Feb 11; 28(3):175-81. PubMed ID: 16489495 [Abstract] [Full Text] [Related] Page: [Next] [New Search]