These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
187 related items for PubMed ID: 39415058
1. Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR-Cas9 ribonucleoprotein. Chen K, Han H, Zhao S, Xu B, Yin B, Lawanprasert A, Trinidad M, Burgstone BW, Murthy N, Doudna JA. Nat Biotechnol; 2024 Oct 16. PubMed ID: 39415058 [Abstract] [Full Text] [Related]
2. Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR-Cas9 RNP. Chen K, Han H, Zhao S, Xu B, Yin B, Trinidad M, Burgstone BW, Murthy N, Doudna JA. bioRxiv; 2023 Nov 15. PubMed ID: 38014175 [Abstract] [Full Text] [Related]
3. Comparative analysis of lipid Nanoparticle-Mediated delivery of CRISPR-Cas9 RNP versus mRNA/sgRNA for gene editing in vitro and in vivo. Walther J, Porenta D, Wilbie D, Seinen C, Benne N, Yang Q, de Jong OG, Lei Z, Mastrobattista E. Eur J Pharm Biopharm; 2024 Mar 15; 196():114207. PubMed ID: 38325664 [Abstract] [Full Text] [Related]
5. LNP-mediated delivery of CRISPR RNP for wide-spread in vivo genome editing in mouse cornea. Mirjalili Mohanna SZ, Djaksigulova D, Hill AM, Wagner PK, Simpson EM, Leavitt BR. J Control Release; 2022 Oct 20; 350():401-413. PubMed ID: 36029893 [Abstract] [Full Text] [Related]
6. Lipid nanoparticle-based ribonucleoprotein delivery for in vivo genome editing. Onuma H, Sato Y, Harashima H. J Control Release; 2023 Mar 20; 355():406-416. PubMed ID: 36773957 [Abstract] [Full Text] [Related]
7. Engineering branched ionizable lipid for hepatic delivery of clustered regularly interspaced short palindromic repeat-Cas9 ribonucleoproteins. Onuma H, Shimizu R, Suzuki Y, Sato M, Harashima H, Sato Y. iScience; 2024 Oct 18; 27(10):110928. PubMed ID: 39381750 [Abstract] [Full Text] [Related]
8. A biodegradable lipid nanoparticle delivers a Cas9 ribonucleoprotein for efficient and safe in situ genome editing in melanoma. Yang X, Zhou S, Zeng J, Zhang S, Li M, Yue F, Chen Z, Dong Y, Zeng Y, Luo J. Acta Biomater; 2024 Dec 18; 190():531-547. PubMed ID: 39461690 [Abstract] [Full Text] [Related]
11. Development of both type I-B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum. Walker JE, Lanahan AA, Zheng T, Toruno C, Lynd LR, Cameron JC, Olson DG, Eckert CA. Metab Eng Commun; 2020 Jun 18; 10():e00116. PubMed ID: 31890588 [Abstract] [Full Text] [Related]
12. CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells. Bloomer H, Khirallah J, Li Y, Xu Q. Adv Drug Deliv Rev; 2022 Feb 18; 181():114087. PubMed ID: 34942274 [Abstract] [Full Text] [Related]
16. Guanidinium-Rich Lipopeptide-Based Nanoparticle Enables Efficient Gene Editing in Skeletal Muscles. Zhu M, Wang X, Xie R, Wang Y, Xu X, Burger J, Gong S. ACS Appl Mater Interfaces; 2023 Mar 01; 15(8):10464-10476. PubMed ID: 36800641 [Abstract] [Full Text] [Related]
19. Iron-Confined CRISPR/Cas9-Ribonucleoprotein Delivery System for Redox-Responsive Gene Editing. Qiu L, Sun M, Chen L, Jiang J, Fu Z, Wang Y, Bi Y, Guo Q, Bai H, Chen S, Gao L, Chang G. Small; 2024 Jul 01; 20(30):e2309431. PubMed ID: 38402425 [Abstract] [Full Text] [Related]
20. Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes. Jacobi AM, Rettig GR, Turk R, Collingwood MA, Zeiner SA, Quadros RM, Harms DW, Bonthuis PJ, Gregg C, Ohtsuka M, Gurumurthy CB, Behlke MA. Methods; 2017 May 15; 121-122():16-28. PubMed ID: 28351759 [Abstract] [Full Text] [Related] Page: [Next] [New Search]