These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


116 related items for PubMed ID: 39417302

  • 1. Dissimilatory Iodate-Reducing Microorganisms Contribute to the Enrichment of Iodine in Groundwater.
    Li J, Fang W, Li C, Cui M, Qian L, Jiang Z, Jiang Y, Shi L, Xie X, Guo H, Li P, Dong Y, Xiu W, Wang Y, Wang Y.
    Environ Sci Technol; 2024 Oct 29; 58(43):19255-19265. PubMed ID: 39417302
    [Abstract] [Full Text] [Related]

  • 2. Microbial Contributions to Iodide Enrichment in Deep Groundwater in the North China Plain.
    Jiang Z, Huang M, Jiang Y, Dong Y, Shi L, Li J, Wang Y.
    Environ Sci Technol; 2023 Feb 14; 57(6):2625-2635. PubMed ID: 36668684
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Bacterial Sulfate Reduction Facilitates Iodine Mobilization in the Deep Confined Aquifer of the North China Plain.
    Jiang Z, Qian L, Cui M, Jiang Y, Shi L, Dong Y, Li J, Wang Y.
    Environ Sci Technol; 2023 Oct 10; 57(40):15277-15287. PubMed ID: 37751521
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Iodate reduction by marine aerobic bacteria.
    Kine K, Yamamura S, Amachi S.
    Front Microbiol; 2024 Oct 10; 15():1446596. PubMed ID: 39360326
    [Abstract] [Full Text] [Related]

  • 9. Genetic and phylogenetic analysis of dissimilatory iodate-reducing bacteria identifies potential niches across the world's oceans.
    Reyes-Umana V, Henning Z, Lee K, Barnum TP, Coates JD.
    ISME J; 2022 Jan 10; 16(1):38-49. PubMed ID: 34215855
    [Abstract] [Full Text] [Related]

  • 10. Dissimilatory iodate reduction by marine Pseudomonas sp. strain SCT.
    Amachi S, Kawaguchi N, Muramatsu Y, Tsuchiya S, Watanabe Y, Shinoyama H, Fujii T.
    Appl Environ Microbiol; 2007 Sep 10; 73(18):5725-30. PubMed ID: 17644635
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Iodine enrichment in the groundwater in South China and its hydrogeochemical control.
    Zhou F, Xu Q, Chen Y, Zhang W, Qiu R.
    J Environ Sci (China); 2024 Aug 10; 142():226-235. PubMed ID: 38527888
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Hydrogeochemistry of high iodine groundwater: a case study at the Datong Basin, northern China.
    Li J, Wang Y, Xie X, Zhang L, Guo W.
    Environ Sci Process Impacts; 2013 Apr 10; 15(4):848-59. PubMed ID: 23478640
    [Abstract] [Full Text] [Related]

  • 17. Uptake mechanism for iodine species to black carbon.
    Choung S, Um W, Kim M, Kim MG.
    Environ Sci Technol; 2013 Sep 17; 47(18):10349-55. PubMed ID: 23941630
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Determination of iodide, iodate and organo-iodine in waters with a new total organic iodine measurement approach.
    Gong T, Zhang X.
    Water Res; 2013 Nov 01; 47(17):6660-9. PubMed ID: 24075720
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.