These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


117 related items for PubMed ID: 3942207

  • 1. Co2+, low Ca2+, and verapamil reduce mechanical activity in rat skeletal muscles.
    Kotsias BA, Muchnik S, Obejero Paz CA.
    Am J Physiol; 1986 Jan; 250(1 Pt 1):C40-6. PubMed ID: 3942207
    [Abstract] [Full Text] [Related]

  • 2. The effect of verapamil and Ca free solution on mechanical and electrical properties in fast twitch mammalian skeletal muscle.
    Delbono O, Obejero Paz CA, Muchnik S.
    Acta Physiol Pharmacol Latinoam; 1987 Jan; 37(4):423-35. PubMed ID: 3274022
    [Abstract] [Full Text] [Related]

  • 3. Verapamil and zero Ca2+ alter responses of cat muscle to halothane and caffeine.
    Deuster PA, Bockman EL, Biscardi H, Muldoon SM.
    J Appl Physiol (1985); 1986 Mar; 60(3):935-41. PubMed ID: 3957844
    [Abstract] [Full Text] [Related]

  • 4. Effects of cobalt, magnesium, and cadmium on contraction of rat soleus muscle.
    Dulhunty AF, Gage PW.
    Biophys J; 1989 Jul; 56(1):1-14. PubMed ID: 2752079
    [Abstract] [Full Text] [Related]

  • 5. Frequency-dependent effect of verapamil on rat soleus muscle.
    Kotsias BA, Muchnik S.
    Experientia; 1985 Dec 15; 41(12):1538-40. PubMed ID: 4076398
    [Abstract] [Full Text] [Related]

  • 6. Dependence of contractile responses by some calcium antagonists on external calcium in the skeletal muscle.
    Kawata H, Hatae J.
    Jpn J Physiol; 1990 Dec 15; 40(3):337-50. PubMed ID: 2273634
    [Abstract] [Full Text] [Related]

  • 7. Twitch potentiation induced by caffeine in the mouse diaphragm depends on external calcium ions in the absence of potassium ions.
    Nishimura M, Matsushita M, Taquahashi Y, Shimizu Y, Satoh E, Hasegawa T.
    Gen Pharmacol; 1997 Nov 15; 29(5):805-8. PubMed ID: 9347330
    [Abstract] [Full Text] [Related]

  • 8. Twitch potentiation of frog (Rana japonica) skeletal muscle by antipyrine.
    Fujishiro N, Kawata H.
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1989 Nov 15; 92(1):61-5. PubMed ID: 2566446
    [Abstract] [Full Text] [Related]

  • 9. Paralysis of frog skeletal muscle fibres by the calcium antagonist D-600.
    Eisenberg RS, McCarthy RT, Milton RL.
    J Physiol; 1983 Aug 15; 341():495-505. PubMed ID: 6604805
    [Abstract] [Full Text] [Related]

  • 10. Ruthenium red effect on mechanical and electrical properties of mammalian skeletal muscle.
    Delbono O, Kotsias BA.
    Life Sci; 1989 Aug 15; 45(18):1699-708. PubMed ID: 2479803
    [Abstract] [Full Text] [Related]

  • 11. Effects of calcium antagonists on mechanical responses of mammalian skeletal muscles.
    Gallant EM, Goettl VM.
    Eur J Pharmacol; 1985 Nov 05; 117(2):259-65. PubMed ID: 2416576
    [Abstract] [Full Text] [Related]

  • 12. Differential contractile impairment of fast- and slow-twitch skeletal muscles in a rat model of doxorubicin-induced congestive heart failure.
    Ertunc M, Sara Y, Korkusuz P, Onur R.
    Pharmacology; 2009 Nov 05; 84(4):240-8. PubMed ID: 19776660
    [Abstract] [Full Text] [Related]

  • 13. Effects of resting membrane potential and intactness of the T-tubules on caffeine contractures in rat skeletal muscle.
    Kotsias BA, Obejero Paz CA, Muchnik S.
    Life Sci; 1987 Jun 08; 40(23):2269-76. PubMed ID: 3586858
    [Abstract] [Full Text] [Related]

  • 14. Effects of rapid cooling on mechanical and electrical responses in ventricular muscle of guinea-pig.
    Kurihara S, Sakai T.
    J Physiol; 1985 Apr 08; 361():361-78. PubMed ID: 3989731
    [Abstract] [Full Text] [Related]

  • 15. A fast-twitch oxidative-glycolytic muscle with a robust inward calcium current.
    Carlsen RC, Larson DB, Walsh DA.
    Can J Physiol Pharmacol; 1985 Aug 08; 63(8):958-65. PubMed ID: 2416421
    [Abstract] [Full Text] [Related]

  • 16. Effect of low extracellular calcium and ryanodine on muscle contraction of the mouse during postnatal development.
    Dangain J, Neering IR.
    Can J Physiol Pharmacol; 1991 Sep 08; 69(9):1294-300. PubMed ID: 1756427
    [Abstract] [Full Text] [Related]

  • 17. Cadmium withdrawal contractures in rat soleus muscle fibres.
    Mould J, Dulhunty AF.
    Pflugers Arch; 2000 May 08; 440(1):68-74. PubMed ID: 10863999
    [Abstract] [Full Text] [Related]

  • 18. Contractile dysfunctions in ATP-dependent K+ channel-deficient mouse muscle during fatigue involve excessive depolarization and Ca2+ influx through L-type Ca2+ channels.
    Cifelli C, Boudreault L, Gong B, Bercier JP, Renaud JM.
    Exp Physiol; 2008 Oct 08; 93(10):1126-38. PubMed ID: 18586858
    [Abstract] [Full Text] [Related]

  • 19. The effects of verapamil on tetanic contractions of frog's skeletal muscle.
    Oz M, Frank GB.
    Comp Biochem Physiol Pharmacol Toxicol Endocrinol; 1994 Mar 08; 107(3):321-9. PubMed ID: 8061938
    [Abstract] [Full Text] [Related]

  • 20. Barium-treated mammalian skeletal muscle: similarities to hypokalaemic periodic paralysis.
    Gallant EM.
    J Physiol; 1983 Feb 08; 335():577-90. PubMed ID: 6308221
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.