These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
112 related items for PubMed ID: 39428108
1. Comparisons of computer simulations and experimental data for capacitive hyperthermia using different split-phantoms. Muratoglu R, Gerster D, Nadobny J, Hansch A, Krahl P, Veltsista PD, Beck M, Zips D, Ghadjar P. Int J Hyperthermia; 2024; 41(1):2416999. PubMed ID: 39428108 [Abstract] [Full Text] [Related]
2. Experimental and computational evaluation of capacitive hyperthermia. Beck M, Wust P, Oberacker E, Rattunde A, Päßler T, Chrzon B, Veltsista PD, Nadobny J, Pellicer R, Herz E, Winter L, Budach V, Zschaeck S, Ghadjar P. Int J Hyperthermia; 2022; 39(1):504-516. PubMed ID: 35296213 [Abstract] [Full Text] [Related]
3. Locoregional hyperthermia of deep-seated tumours applied with capacitive and radiative systems: a simulation study. Kok HP, Navarro F, Strigari L, Cavagnaro M, Crezee J. Int J Hyperthermia; 2018 Sep; 34(6):714-730. PubMed ID: 29509043 [Abstract] [Full Text] [Related]
4. Experimental validation of hyperthermia SAR treatment planning using MR B1+ imaging. Van den Berg CA, Bartels LW, De Leeuw AA, Lagendijk JJ, Van de Kamer JB. Phys Med Biol; 2004 Nov 21; 49(22):5029-42. PubMed ID: 15609556 [Abstract] [Full Text] [Related]
5. Validation and practical use of Plan2Heat hyperthermia treatment planning for capacitive heating. Kok HP, Crezee J. Int J Hyperthermia; 2022 Nov 21; 39(1):952-966. PubMed ID: 35853733 [Abstract] [Full Text] [Related]
6. Model-based feasibility assessment and evaluation of prostate hyperthermia with a commercial MR-guided endorectal HIFU ablation array. Salgaonkar VA, Prakash P, Rieke V, Ozhinsky E, Plata J, Kurhanewicz J, Hsu IC, Diederich CJ. Med Phys; 2014 Mar 21; 41(3):033301. PubMed ID: 24593742 [Abstract] [Full Text] [Related]
7. A comparison of the heating characteristics of capacitive and radiative superficial hyperthermia. Kok HP, Crezee J. Int J Hyperthermia; 2017 Jun 21; 33(4):378-386. PubMed ID: 27951733 [Abstract] [Full Text] [Related]
8. Improved hyperthermia treatment control using SAR/temperature simulation and PRFS magnetic resonance thermal imaging. Li Z, Vogel M, Maccarini PF, Stakhursky V, Soher BJ, Craciunescu OI, Das S, Arabe OA, Joines WT, Stauffer PR. Int J Hyperthermia; 2011 Jun 21; 27(1):86-99. PubMed ID: 21070140 [Abstract] [Full Text] [Related]
9. Capacitive heating of phantom and human tumors with an 8 MHz radiofrequency applicator (Thermotron RF-8). Song CW, Rhee JG, Lee CK, Levitt SH. Int J Radiat Oncol Biol Phys; 1986 Mar 21; 12(3):365-72. PubMed ID: 3957735 [Abstract] [Full Text] [Related]
10. Local RF capacitive hyperthermia: thermal profiles and tumour response. Reddy NM, Maithreyan V, Vasanthan A, Balakrishnan IS, Bhaskar BK, Jayaraman R, Shanta V, Krishnamurthi S. Int J Hyperthermia; 1987 Mar 21; 3(4):379-87. PubMed ID: 3668319 [Abstract] [Full Text] [Related]
11. FDTD simulations to assess the performance of CFMA-434 applicators for superficial hyperthermia. Kok HP, De Greef M, Correia D, Vörding PJ, Van Stam G, Gelvich EA, Bel A, Crezee J. Int J Hyperthermia; 2009 Mar 21; 25(6):462-76. PubMed ID: 19657850 [Abstract] [Full Text] [Related]
12. Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation. Kim KS, Hernandez D, Lee SY. Biomed Eng Online; 2015 Oct 24; 14():95. PubMed ID: 26499058 [Abstract] [Full Text] [Related]
13. Assessment of the performance characteristics of a prototype 12-element capacitive contact flexible microstrip applicator (CFMA-12) for superficial hyperthermia. Lee WM, Gelvich EA, van der Baan P, Mazokhin VN, van Rhoon GC. Int J Hyperthermia; 2004 Sep 24; 20(6):607-24. PubMed ID: 15370817 [Abstract] [Full Text] [Related]
14. Development of the re-entrant type resonant cavity applicator for brain tumor hyperthermia - experimental heating results. Yabuhara T, Kato K, Tsuchiya K, Shigihara T, Uzuka T, Takahashi H. Conf Proc IEEE Eng Med Biol Soc; 2006 Sep 24; 2006():5161-4. PubMed ID: 17945880 [Abstract] [Full Text] [Related]
15. Reduction of peak acoustic pressure and shaping of heated region by use of multifoci sonications in MR-guided high-intensity focused ultrasound mediated mild hyperthermia. Partanen A, Tillander M, Yarmolenko PS, Wood BJ, Dreher MR, Kohler MO. Med Phys; 2013 Jan 24; 40(1):013301. PubMed ID: 23298120 [Abstract] [Full Text] [Related]
16. Characterization of the RF ablation-induced 'oven effect': the importance of background tissue thermal conductivity on tissue heating. Liu Z, Ahmed M, Weinstein Y, Yi M, Mahajan RL, Goldberg SN. Int J Hyperthermia; 2006 Jun 24; 22(4):327-42. PubMed ID: 16754353 [Abstract] [Full Text] [Related]
17. The usefulness of mobile insulator sheets for the optimisation of deep heating area for regional hyperthermia using a capacitively coupled heating method: phantom, simulation and clinical prospective studies. Tomura K, Ohguri T, Mulder HT, Murakami M, Nakahara S, Yahara K, Korogi Y. Int J Hyperthermia; 2018 Nov 24; 34(7):1092-1103. PubMed ID: 29108446 [Abstract] [Full Text] [Related]
18. Nanoparticle-mediated radiofrequency capacitive hyperthermia: A phantom study with magnetic resonance thermometry. Kim KS, Lee SY. Int J Hyperthermia; 2015 Nov 24; 31(8):831-9. PubMed ID: 26555005 [Abstract] [Full Text] [Related]
19. A practical approach to thermography in a hyperthermia/magnetic resonance hybrid system: validation in a heterogeneous phantom. Gellermann J, Wlodarczyk W, Ganter H, Nadobny J, Fähling H, Seebass M, Felix R, Wust P. Int J Radiat Oncol Biol Phys; 2005 Jan 01; 61(1):267-77. PubMed ID: 15629620 [Abstract] [Full Text] [Related]
20. Ethylcellulose-stabilized fat-tissue phantom for quality assurance in clinical hyperthermia. De Lazzari M, Ström A, Farina L, Silva NP, Curto S, Trefná HD. Int J Hyperthermia; 2023 Jan 01; 40(1):2207797. PubMed ID: 37196995 [Abstract] [Full Text] [Related] Page: [Next] [New Search]