These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
201 related items for PubMed ID: 39594
1. Protein mobility and self-association by deuterium nuclear magnetic resonance. Wooten JB, Cohen JS. Biochemistry; 1979 Sep 18; 18(19):4188-91. PubMed ID: 39594 [Abstract] [Full Text] [Related]
2. Nuclear magnetic resonance studies of amino acids and proteins. Rotational correlation times of proteins by deuterium nuclear magnetic resonance spectroscopy. Schramm S, Oldfield E. Biochemistry; 1983 Jun 07; 22(12):2908-13. PubMed ID: 6871171 [Abstract] [Full Text] [Related]
3. Nuclear-magnetic-resonance study of the histidine residues of S-peptide and S-protein and kinetics of 1H-2H exchange of ribonuclease A. Bradbury JH, Crompton MW, Teh JS. Eur J Biochem; 1977 Dec 01; 81(2):411-22. PubMed ID: 23288 [Abstract] [Full Text] [Related]
4. Protein-water interaction studied by solvent 1H, 2H, and 17O magnetic relaxation. Koenig SH, Hallenga K, Shporer M. Proc Natl Acad Sci U S A; 1975 Jul 01; 72(7):2667-71. PubMed ID: 1058481 [Abstract] [Full Text] [Related]
5. Detection and classification of hyperfine-shifted 1H, 2H, and 15N resonances of the Rieske ferredoxin component of toluene 4-monooxygenase. Xia B, Pikus JD, Xia W, McClay K, Steffan RJ, Chae YK, Westler WM, Markley JL, Fox BG. Biochemistry; 1999 Jan 12; 38(2):727-39. PubMed ID: 9888813 [Abstract] [Full Text] [Related]
6. Water molecule dynamics in hydrated lysozyme. A deuteron magnetic resonance study. Peemoeller H, Yeomans FG, Kydon DW, Sharp AR. Biophys J; 1986 Apr 12; 49(4):943-8. PubMed ID: 3013332 [Abstract] [Full Text] [Related]
7. Reversible unfolding of cytochrome c upon interaction with cardiolipin bilayers. 1. Evidence from deuterium NMR measurements. Spooner PJ, Watts A. Biochemistry; 1991 Apr 23; 30(16):3871-9. PubMed ID: 1850290 [Abstract] [Full Text] [Related]
8. Oxygen-17 and deuterium nuclear magnetic relaxation studies of lysozyme hydration in solution: field dispersion, concentration, pH/pD, and protein activity dependences. Kakalis LT, Baianu IC. Arch Biochem Biophys; 1988 Dec 23; 267(2):829-41. PubMed ID: 3214182 [Abstract] [Full Text] [Related]
9. Participation of tryptophan 62 in the self-association of hen egg white lysozyme. Application of natural abundance carbon 13 nuclear magnetic resonance spectroscopy. Norton RS, Allerhand A. J Biol Chem; 1977 Mar 10; 252(5):1795-8. PubMed ID: 14163 [Abstract] [Full Text] [Related]
10. Studies of chemically modified histidine residues of proteins by carbon 13 nuclear magnetic resonance spectroscopy. Reaction of hen egg white lysozyme with iodoacetate. Goux WJ, Allerhand A. J Biol Chem; 1979 Apr 10; 254(7):2210-3. PubMed ID: 34602 [Abstract] [Full Text] [Related]
11. Assignment of the histidine proton magnetic resonance peaks of soybean trypsin inhibitor (Kunitz) by a differertial deuterium exchange technique. Markley JL, Kato I. Biochemistry; 1975 Jul 15; 14(14):3234-7. PubMed ID: 238587 [Abstract] [Full Text] [Related]
12. Characterization of the histidine residues in alkaline phosphatase by carbon-13 nuclear magnetic resonance. Otvos JD, Browne DT. Biochemistry; 1980 Aug 19; 19(17):4011-21. PubMed ID: 6996713 [Abstract] [Full Text] [Related]
13. Backbone motions in a crystalline protein from field-dependent 2H-NMR relaxation and line-shape analysis. Mack JW, Usha MG, Long J, Griffin RG, Wittebort RJ. Biopolymers; 2000 Jan 19; 53(1):9-18. PubMed ID: 10644947 [Abstract] [Full Text] [Related]
14. 1H NMR studies on the CuA center of nitrous oxide reductase from Pseudomonas stutzeri. Holz RC, Alvarez ML, Zumft WG, Dooley DM. Biochemistry; 1999 Aug 24; 38(34):11164-71. PubMed ID: 10460173 [Abstract] [Full Text] [Related]
15. Study of the tryptophan residues of lysozyme using 1H nuclear magnetic resonance. Cassels R, Dobson CM, Poulsen FM, Williams RJ. Eur J Biochem; 1978 Dec 01; 92(1):81-97. PubMed ID: 32040 [Abstract] [Full Text] [Related]
16. Studies of chemical modifications of proteins by carbon 13 neuclear magnetic resonance spectroscopy. Reaction of hen egg white lysozyme with iodine. Norton RS, Allerhand A. J Biol Chem; 1976 Nov 10; 251(21):6522-8. PubMed ID: 988024 [Abstract] [Full Text] [Related]
17. Nuclear magnetic resonance studies of amino acids and proteins. Side-chain mobility of methionine in the crystalline amino acid and in crystalline sperm whale (Physeter catodon) myoglobin. Keniry MA, Rothgeb TM, Smith RL, Gutowsky HS, Oldfield E. Biochemistry; 1983 Apr 12; 22(8):1917-26. PubMed ID: 6849895 [Abstract] [Full Text] [Related]
18. Proton NMR studies of a large protein. pH, substrate titrations, and NOESY experiments with perdeuterated yeast phosphoglycerate kinase containing [1H]histidine residues. Pappu KM, Serpersu EH. J Magn Reson B; 1994 Oct 12; 105(2):157-66. PubMed ID: 7952930 [Abstract] [Full Text] [Related]
19. Studies of individual carbon sites of hen egg white lysozyme by natural abundance carbon 13 nuclear magnetic resonance spectroscopy. Assignment of the nonprotonated aromatic carbon resonances to specific residues in the sequence. Allerhand A, Norton RS, Childers RF. J Biol Chem; 1977 Mar 10; 252(5):1786-94. PubMed ID: 14162 [Abstract] [Full Text] [Related]
20. Protein expression, selective isotopic labeling, and analysis of hyperfine-shifted NMR signals of Anabaena 7120 vegetative [2Fe-2S]ferredoxin. Cheng H, Westler WM, Xia B, Oh BH, Markley JL. Arch Biochem Biophys; 1995 Jan 10; 316(1):619-34. PubMed ID: 7840674 [Abstract] [Full Text] [Related] Page: [Next] [New Search]