These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
217 related items for PubMed ID: 3972835
1. Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 31P NMR magnetization transfer study. Bittl JA, Ingwall JS. J Biol Chem; 1985 Mar 25; 260(6):3512-7. PubMed ID: 3972835 [Abstract] [Full Text] [Related]
2. The energetics of myocardial stretch. Creatine kinase flux and oxygen consumption in the noncontracting rat heart. Bittl JA, Ingwall JS. Circ Res; 1986 Mar 25; 58(3):378-83. PubMed ID: 3013457 [Abstract] [Full Text] [Related]
3. Velocity of the creatine kinase reaction decreases in postischemic myocardium: a 31P-NMR magnetization transfer study of the isolated ferret heart. Neubauer S, Hamman BL, Perry SB, Bittl JA, Ingwall JS. Circ Res; 1988 Jul 25; 63(1):1-15. PubMed ID: 3383370 [Abstract] [Full Text] [Related]
4. 31P NMR saturation transfer measurements of phosphorus exchange reactions in rat heart and kidney in situ. Koretsky AP, Wang S, Klein MP, James TL, Weiner MW. Biochemistry; 1986 Jan 14; 25(1):77-84. PubMed ID: 3954995 [Abstract] [Full Text] [Related]
5. Creatine kinase kinetics, ATP turnover, and cardiac performance in hearts depleted of creatine with the substrate analogue beta-guanidinopropionic acid. Shoubridge EA, Jeffry FM, Keogh JM, Radda GK, Seymour AM. Biochim Biophys Acta; 1985 Oct 30; 847(1):25-32. PubMed ID: 4052460 [Abstract] [Full Text] [Related]
6. pH and temperature effects on kinetics of creatine kinase in aqueous solution and in isovolumic perfused heart. A 31P nuclear magnetization transfer study. Goudemant JF, vander Elst L, Dupont B, Van Haverbeke Y, Muller RN. NMR Biomed; 1994 May 30; 7(3):101-10. PubMed ID: 8080711 [Abstract] [Full Text] [Related]
7. A 31P-NMR saturation transfer study of the regulation of creatine kinase in the rat heart. Matthews PM, Bland JL, Gadian DG, Radda GK. Biochim Biophys Acta; 1982 Nov 17; 721(3):312-20. PubMed ID: 7171631 [Abstract] [Full Text] [Related]
8. 31P NMR kinetics study of cardiac metabolism under mild hypoxia. Goudemant JF, Vander Elst L, Van Haverbeke Y, Muller RN. J Magn Reson B; 1995 Mar 17; 106(3):212-9. PubMed ID: 7719621 [Abstract] [Full Text] [Related]
9. Analysis of compartmentation of ATP in skeletal and cardiac muscle using 31P nuclear magnetic resonance saturation transfer. Zahler R, Bittl JA, Ingwall JS. Biophys J; 1987 Jun 17; 51(6):883-93. PubMed ID: 3607210 [Abstract] [Full Text] [Related]
10. Myocardial creatine kinase exchange rates and 31P NMR relaxation rates in intact pigs. Martin JF, Guth BD, Griffey RH, Hoekenga DE. Magn Reson Med; 1989 Jul 17; 11(1):64-72. PubMed ID: 2747517 [Abstract] [Full Text] [Related]
11. Regulation of energy flux through the creatine kinase reaction in vitro and in perfused rat heart. 31P-NMR studies. Kupriyanov VV, Ya Steinschneider A, Ruuge EK, Kapel'ko VI, Yu Zueva M, Lakomkin VL, Smirnov VN, Saks VA. Biochim Biophys Acta; 1984 Dec 11; 805(4):319-31. PubMed ID: 6509089 [Abstract] [Full Text] [Related]
12. Kinetics of creatine kinase in heart: a 31P NMR saturation- and inversion-transfer study. Degani H, Laughlin M, Campbell S, Shulman RG. Biochemistry; 1985 Sep 24; 24(20):5510-6. PubMed ID: 4074712 [Abstract] [Full Text] [Related]
13. 31P NMR measurement of ATP synthesis rate in perfused intact rat hearts. Kingsley-Hickman P, Sako EY, Andreone PA, St Cyr JA, Michurski S, Foker JE, From AH, Petein M, Ugurbil K. FEBS Lett; 1986 Mar 17; 198(1):159-63. PubMed ID: 2869973 [Abstract] [Full Text] [Related]
14. Kinetics of creatine kinase in an experimental model of low phosphocreatine and ATP in the normoxic heart. Stepanov V, Mateo P, Gillet B, Beloeil JC, Lechene P, Hoerter JA. Am J Physiol; 1997 Oct 17; 273(4):C1397-408. PubMed ID: 9357786 [Abstract] [Full Text] [Related]
15. Velocity of the creatine kinase reaction in the neonatal rabbit heart: role of mitochondrial creatine kinase. Perry SB, McAuliffe J, Balschi JA, Hickey PR, Ingwall JS. Biochemistry; 1988 Mar 22; 27(6):2165-72. PubMed ID: 3378051 [Abstract] [Full Text] [Related]
16. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice. Aliev MK, van Dorsten FA, Nederhoff MG, van Echteld CJ, Veksler V, Nicolay K, Saks VA. Mol Cell Biochem; 1998 Jul 22; 184(1-2):209-29. PubMed ID: 9746323 [Abstract] [Full Text] [Related]
17. Myocardial adaptation during acute hibernation: mechanisms of phosphocreatine recovery. Schaefer S, Carr LJ, Kreutzer U, Jue T. Cardiovasc Res; 1993 Nov 22; 27(11):2044-51. PubMed ID: 8287416 [Abstract] [Full Text] [Related]
18. ATP synthesis and degradation rates in the perfused rat heart. 31P-nuclear magnetic resonance double saturation transfer measurements. Spencer RG, Balschi JA, Leigh JS, Ingwall JS. Biophys J; 1988 Nov 22; 54(5):921-9. PubMed ID: 3242635 [Abstract] [Full Text] [Related]
19. Cardiac performance and creatine kinase flux during inhibition of ATP synthesis in the perfused rat heart. Mateo P, Stepanov V, Gillet B, Beloeil JC, Hoerter JA. Am J Physiol; 1999 Jul 22; 277(1):H308-17. PubMed ID: 10409210 [Abstract] [Full Text] [Related]
20. On the theoretical limits of detecting cyclic changes in cardiac high-energy phosphates and creatine kinase reaction kinetics using in vivo ³¹P MRS. Weiss K, Bottomley PA, Weiss RG. NMR Biomed; 2015 Jun 22; 28(6):694-705. PubMed ID: 25914379 [Abstract] [Full Text] [Related] Page: [Next] [New Search]