These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
179 related items for PubMed ID: 3978081
1. Light-driven protonation changes of internal aspartic acids of bacteriorhodopsin: an investigation by static and time-resolved infrared difference spectroscopy using [4-13C]aspartic acid labeled purple membrane. Engelhard M, Gerwert K, Hess B, Kreutz W, Siebert F. Biochemistry; 1985 Jan 15; 24(2):400-7. PubMed ID: 3978081 [Abstract] [Full Text] [Related]
2. Aspartic acid-212 of bacteriorhodopsin is ionized in the M and N photocycle intermediates: an FTIR study on specifically 13C-labeled reconstituted purple membranes. Fahmy K, Weidlich O, Engelhard M, Sigrist H, Siebert F. Biochemistry; 1993 Jun 08; 32(22):5862-9. PubMed ID: 8504106 [Abstract] [Full Text] [Related]
3. Trans/13-cis isomerization is essential for both the photocycle and proton pumping of bacteriorhodopsin. Chang CH, Govindjee R, Ebrey T, Bagley KA, Dollinger G, Eisenstein L, Marque J, Roder H, Vittitow J, Fang JM. Biophys J; 1985 Apr 08; 47(4):509-12. PubMed ID: 2985136 [Abstract] [Full Text] [Related]
4. Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212. Braiman MS, Mogi T, Marti T, Stern LJ, Khorana HG, Rothschild KJ. Biochemistry; 1988 Nov 15; 27(23):8516-20. PubMed ID: 2851326 [Abstract] [Full Text] [Related]
5. Infrared studies of the photocycle of bacteriorhodopsin. Bagley K, Dollinger G, Eisenstein L, Hong M, Vittitow J, Zimányi L. Prog Clin Biol Res; 1984 Nov 15; 164():27-37. PubMed ID: 6522402 [No Abstract] [Full Text] [Related]
6. Fourier transform infrared evidence for proline structural changes during the bacteriorhodopsin photocycle. Rothschild KJ, He YW, Gray D, Roepe PD, Pelletier SL, Brown RS, Herzfeld J. Proc Natl Acad Sci U S A; 1989 Dec 15; 86(24):9832-5. PubMed ID: 2602377 [Abstract] [Full Text] [Related]
7. Differences between the photocycles of halorhodopsin and the acid purple form of bacteriorhodopsin analyzed with millisecond time-resolved FTIR spectroscopy. Mitrovich QM, Victor KG, Braiman MS. Biophys Chem; 1995 Dec 15; 56(1-2):121-7. PubMed ID: 7662860 [Abstract] [Full Text] [Related]
8. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor. Bergo V, Spudich EN, Scott KL, Spudich JL, Rothschild KJ. Biochemistry; 2000 Mar 21; 39(11):2823-30. PubMed ID: 10715101 [Abstract] [Full Text] [Related]
9. Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts. Bagley K, Dollinger G, Eisenstein L, Singh AK, Zimányi L. Proc Natl Acad Sci U S A; 1982 Aug 21; 79(16):4972-6. PubMed ID: 6956906 [Abstract] [Full Text] [Related]
10. Structural changes in bacteriorhodopsin during the photocycle measured by time-resolved polarized Fourier transform infrared spectroscopy. Kelemen L, Ormos P. Biophys J; 2001 Dec 21; 81(6):3577-89. PubMed ID: 11721018 [Abstract] [Full Text] [Related]
11. Primary step in the bacteriorhodopsin photocycle: photochemistry or excitation transfer? El-Sayed MA, Karvaly B, Fukumoto JM. Proc Natl Acad Sci U S A; 1981 Dec 21; 78(12):7512-6. PubMed ID: 6278477 [Abstract] [Full Text] [Related]
12. D38 is an essential part of the proton translocation pathway in bacteriorhodopsin. Riesle J, Oesterhelt D, Dencher NA, Heberle J. Biochemistry; 1996 May 28; 35(21):6635-43. PubMed ID: 8639612 [Abstract] [Full Text] [Related]
13. Evidence for the rate of the final step in the bacteriorhodopsin photocycle being controlled by the proton release group: R134H mutant. Lu M, Balashov SP, Ebrey TG, Chen N, Chen Y, Menick DR, Crouch RK. Biochemistry; 2000 Mar 07; 39(9):2325-31. PubMed ID: 10694399 [Abstract] [Full Text] [Related]
14. Fourier transform infrared evidence for Schiff base alteration in the first step of the bacteriorhodopsin photocycle. Rothschild KJ, Roepe P, Lugtenburg J, Pardoen JA. Biochemistry; 1984 Dec 04; 23(25):6103-9. PubMed ID: 6525348 [Abstract] [Full Text] [Related]
15. Structural changes due to the deprotonation of the proton release group in the M-photointermediate of bacteriorhodopsin as revealed by time-resolved FTIR spectroscopy. Morgan JE, Vakkasoglu AS, Lugtenburg J, Gennis RB, Maeda A. Biochemistry; 2008 Nov 04; 47(44):11598-605. PubMed ID: 18837559 [Abstract] [Full Text] [Related]
17. Fourier transform infrared spectra of a late intermediate of the bacteriorhodopsin photocycle suggest transient protonation of Asp-212. Dioumaev AK, Brown LS, Needleman R, Lanyi JK. Biochemistry; 1999 Aug 03; 38(31):10070-8. PubMed ID: 10433714 [Abstract] [Full Text] [Related]
18. Proton transfer from Asp-96 to the bacteriorhodopsin Schiff base is caused by a decrease of the pKa of Asp-96 which follows a protein backbone conformational change. Cao Y, Váró G, Klinger AL, Czajkowsky DM, Braiman MS, Needleman R, Lanyi JK. Biochemistry; 1993 Mar 02; 32(8):1981-90. PubMed ID: 8448157 [Abstract] [Full Text] [Related]
19. Interaction between Asp-85 and the proton-releasing group in bacteriorhodopsin. A study of an O-like photocycle intermediate. Gat Y, Friedman N, Sheves M, Ottolenghi M. Biochemistry; 1997 Apr 08; 36(14):4135-48. PubMed ID: 9100007 [Abstract] [Full Text] [Related]
20. Titration of aspartate-85 in bacteriorhodopsin: what it says about chromophore isomerization and proton release. Balashov SP, Imasheva ES, Govindjee R, Ebrey TG. Biophys J; 1996 Jan 08; 70(1):473-81. PubMed ID: 8770224 [Abstract] [Full Text] [Related] Page: [Next] [New Search]