These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
179 related items for PubMed ID: 3980767
1. Central distribution of efferent and afferent components of the pudendal nerve in macaque monkeys. Ueyama T, Mizuno N, Takahashi O, Nomura S, Arakawa H, Matsushima R. J Comp Neurol; 1985 Feb 22; 232(4):548-56. PubMed ID: 3980767 [Abstract] [Full Text] [Related]
2. Central distribution of afferent and efferent components of the pudendal nerve in cat. Ueyama T, Mizuno N, Nomura S, Konishi A, Itoh K, Arakawa H. J Comp Neurol; 1984 Jan 01; 222(1):38-46. PubMed ID: 6699201 [Abstract] [Full Text] [Related]
3. The organization of pudendal motoneurons and primary afferent projections in the spinal cord of the rhesus monkey revealed by horseradish peroxidase. Roppolo JR, Nadelhaft I, de Groat WC. J Comp Neurol; 1985 Apr 22; 234(4):475-88. PubMed ID: 3988996 [Abstract] [Full Text] [Related]
4. Organization of afferent and efferent pathways in the pudendal nerve of the female cat. Thor KB, Morgan C, Nadelhaft I, Houston M, De Groat WC. J Comp Neurol; 1989 Oct 08; 288(2):263-79. PubMed ID: 2477417 [Abstract] [Full Text] [Related]
5. The organization of the pudendal nerve in the male and female rat. McKenna KE, Nadelhaft I. J Comp Neurol; 1986 Jun 22; 248(4):532-49. PubMed ID: 3722467 [Abstract] [Full Text] [Related]
6. Immunohistochemical evidence for the interaction between levator ani and pudendal motor neurons in the coordination of pelvic floor and visceral activity in the squirrel monkey. Pierce LM, Reyes M, Thor KB, Dolber PC, Bremer RE, Kuehl TJ, Coates KW. Am J Obstet Gynecol; 2005 May 22; 192(5):1506-15. PubMed ID: 15902150 [Abstract] [Full Text] [Related]
7. Central distribution of efferent and afferent components of the pudendal nerve in rat. Ueyama T, Arakawa H, Mizuno N. Anat Embryol (Berl); 1987 May 22; 177(1):37-49. PubMed ID: 3439636 [Abstract] [Full Text] [Related]
8. Localization of NADPH diaphorase in the lumbosacral spinal cord and dorsal root ganglia of the cat. Vizzard MA, Erdman SL, Erickson VL, Stewart RJ, Roppolo JR, De Groat WC. J Comp Neurol; 1994 Jan 01; 339(1):62-75. PubMed ID: 8106662 [Abstract] [Full Text] [Related]
9. The evidence for nitric oxide synthase immunopositivity in the monosynaptic Ia-motoneuron pathway of the dog. Marsala J, Lukácová N, Sulla I, Wohlfahrt P, Marsala M. Exp Neurol; 2005 Sep 01; 195(1):161-78. PubMed ID: 15979072 [Abstract] [Full Text] [Related]
10. Observations on the afferent and efferent organization of the vagus nerve and the innervation of the stomach in the squirrel monkey. Gwyn DG, Leslie RA, Hopkins DA. J Comp Neurol; 1985 Sep 08; 239(2):163-75. PubMed ID: 4044932 [Abstract] [Full Text] [Related]
11. Spinal nerve root origins of the cutaneous nerves of the canine pelvic limb. Bailey CS, Kitchell RL, Haghighi SS, Johnson RD. Am J Vet Res; 1988 Jan 08; 49(1):115-9. PubMed ID: 3354956 [Abstract] [Full Text] [Related]
12. Distribution of cerebellar neurons projecting directly to the spinal cord: an HRP study in the Japanese monkey and the cat. Takahashi O, Satoda T, Matsushima R, Uemura-Sumi M, Mizuno N. J Hirnforsch; 1987 Jan 08; 28(1):105-13. PubMed ID: 3598173 [Abstract] [Full Text] [Related]
13. Organization within the cranial IX-X complex in ranid frogs: a horseradish peroxidase transport study. Stuesse SL, Cruce WL, Powell KS. J Comp Neurol; 1984 Jan 20; 222(3):358-65. PubMed ID: 6607937 [Abstract] [Full Text] [Related]
14. Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. Langer T, Fuchs AF, Scudder CA, Chubb MC. J Comp Neurol; 1985 May 01; 235(1):1-25. PubMed ID: 3989000 [Abstract] [Full Text] [Related]
15. Distribution and morphology of sacral spinal cord neurons innervating pelvic structures in Xenopus laevis. Campbell HL, Beattie MS, Bresnahan JC. J Comp Neurol; 1994 Sep 22; 347(4):619-27. PubMed ID: 7814678 [Abstract] [Full Text] [Related]
16. Segmental distribution and central projections of renal afferent fibers in the cat studied by transganglionic transport of horseradish peroxidase. Kuo DC, Nadelhaft I, Hisamitsu T, de Groat WC. J Comp Neurol; 1983 May 10; 216(2):162-74. PubMed ID: 6863600 [Abstract] [Full Text] [Related]
17. Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion. Kalia M, Mesulam MM. J Comp Neurol; 1980 Sep 15; 193(2):435-65. PubMed ID: 7440777 [Abstract] [Full Text] [Related]
18. Central projections from cat suboccipital muscles: a study using transganglionic transport of horseradish peroxidase. Bakker DA, Richmond FJ, Abrahams VC. J Comp Neurol; 1984 Sep 20; 228(3):409-21. PubMed ID: 6480919 [Abstract] [Full Text] [Related]
19. [Spinal segment distribution of neural innervation related houhai acupoint--studied by CB-HRP tracing method focused on observation of the dendrites of spinal motor neurons]. Tan H, Shi G, Lin J, Liu K, Zuo Z. Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 1997 Oct 20; 19(5):379-83. PubMed ID: 10453525 [Abstract] [Full Text] [Related]
20. Cells of origin of the spinoreticular tract in the monkey. Kevetter GA, Haber LH, Yezierski RP, Chung JM, Martin RF, Willis WD. J Comp Neurol; 1982 May 01; 207(1):61-74. PubMed ID: 7096639 [Abstract] [Full Text] [Related] Page: [Next] [New Search]