These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


223 related items for PubMed ID: 3981074

  • 21. A novel instrument for studying the flow behaviour of erythrocytes through microchannels simulating human blood capillaries.
    Sutton N, Tracey MC, Johnston ID, Greenaway RS, Rampling MW.
    Microvasc Res; 1997 May; 53(3):272-81. PubMed ID: 9211405
    [Abstract] [Full Text] [Related]

  • 22. Numerical simulation of blood flow through microvascular capillary networks.
    Pozrikidis C.
    Bull Math Biol; 2009 Aug; 71(6):1520-41. PubMed ID: 19267162
    [Abstract] [Full Text] [Related]

  • 23. Regional variation in capillary hemodynamics in the cat retina.
    Jensen PS, Glucksberg MR.
    Invest Ophthalmol Vis Sci; 1998 Feb; 39(2):407-15. PubMed ID: 9478001
    [Abstract] [Full Text] [Related]

  • 24. Role of erythrocyte deformability during capillary wetting.
    Zhou R, Gordon J, Palmer AF, Chang HC.
    Biotechnol Bioeng; 2006 Feb 05; 93(2):201-11. PubMed ID: 16302256
    [Abstract] [Full Text] [Related]

  • 25. [Evaluation of erythrocyte deformability using a cell transit analyzer "CTA". Comparison with the technique of initial filtration flow rate. Application to the blood of diabetic patients].
    Khodabandehlou T, Le Devehat C.
    J Mal Vasc; 1996 Feb 05; 21(3):175-80. PubMed ID: 8965047
    [Abstract] [Full Text] [Related]

  • 26. Impact of the Fåhraeus effect on NO and O2 biotransport: a computer model.
    Lamkin-Kennard KA, Jaron D, Buerk DG.
    Microcirculation; 2004 Jun 05; 11(4):337-49. PubMed ID: 15280073
    [Abstract] [Full Text] [Related]

  • 27. A mathematical model of the flow of blood cells in fine capillaries.
    Ducharme R, Kapadia P, Dowden J.
    J Biomech; 1991 Jun 05; 24(5):299-306. PubMed ID: 2050706
    [Abstract] [Full Text] [Related]

  • 28. [Macro- and micro-rheology of blood circulation].
    Niimi H.
    Iyodenshi To Seitai Kogaku; 1983 Aug 05; 21(4):225-32. PubMed ID: 6366292
    [No Abstract] [Full Text] [Related]

  • 29. Capillary diameter in rat heart in situ: relation to erythrocyte deformability, O2 transport, and transmural O2 gradients.
    Henquell L, LaCelle PL, Honig CR.
    Bibl Anat; 1977 Aug 05; (15 Pt 1):416-9. PubMed ID: 597184
    [No Abstract] [Full Text] [Related]

  • 30. Blood flow in capillary tubes: curvature and gravity effects.
    Hung TC, Hung TK, Bugliarello G.
    Biorheology; 1980 Aug 05; 17(4):331-42. PubMed ID: 7260345
    [No Abstract] [Full Text] [Related]

  • 31. Evaluation of red blood cell filterability test: influences of pore size, hematocrit level, and flow rate.
    Reinhart WH, Usami S, Schmalzer EA, Lee MM, Chien S.
    J Lab Clin Med; 1984 Oct 05; 104(4):501-16. PubMed ID: 6481214
    [Abstract] [Full Text] [Related]

  • 32. [Mathematical model of movement of asymmetrical erythrocyte along the capillary].
    Kisliakov IuA, Kopyl'tsov AV.
    Biofizika; 1990 Oct 05; 35(3):473-7. PubMed ID: 2207191
    [Abstract] [Full Text] [Related]

  • 33. Aggregation and deformability of erythrocytes in leprosy.
    Kumaravel M, Singh M.
    Indian J Exp Biol; 1995 Jun 05; 33(6):408-15. PubMed ID: 7590945
    [Abstract] [Full Text] [Related]

  • 34. Red blood cell motion and hematocrit distribution in a deforming capillary.
    Friend M, Lee JS.
    J Biomech Eng; 1990 Nov 05; 112(4):451-6. PubMed ID: 2273873
    [Abstract] [Full Text] [Related]

  • 35. Dynamic in vivo measurement of erythrocyte velocity and flow in capillaries and of microvessel diameter in the rat brain by confocal laser microscopy.
    Seylaz J, Charbonné R, Nanri K, Von Euw D, Borredon J, Kacem K, Méric P, Pinard E.
    J Cereb Blood Flow Metab; 1999 Aug 05; 19(8):863-70. PubMed ID: 10458593
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Capillary transit times and kinetics of oxygenation in the primary respiratory organ of early chick embryo.
    Meuer HJ, Bertram C.
    Microvasc Res; 1993 May 05; 45(3):302-13. PubMed ID: 8321144
    [Abstract] [Full Text] [Related]

  • 39. Effect of cholesterol content in diet on capillary flow of rat erythrocytes. Part I: geometric and flow characteristics.
    Abugo OO, Peddada RR, Kelly JF, Roth GS, Rifkind JM.
    Clin Hemorheol Microcirc; 1997 May 05; 17(6):437-43. PubMed ID: 9502528
    [Abstract] [Full Text] [Related]

  • 40. Flow of red blood cells in narrow capillaries: role of membrane tension.
    Secomb TW, Gross JF.
    Int J Microcirc Clin Exp; 1983 May 05; 2(3):229-40. PubMed ID: 6678849
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.