These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
128 related items for PubMed ID: 3986324
1. Particle flow behavior in models of branching vessels. II. Effects of branching angle and diameter ratio on flow patterns. Karino T, Goldsmith HL. Biorheology; 1985; 22(2):87-104. PubMed ID: 3986324 [Abstract] [Full Text] [Related]
2. Formation of Vortices in Idealised Branching Vessels: A CFD Benchmark Study. Xue Y, Hellmuth R, Shin DH. Cardiovasc Eng Technol; 2020 Oct; 11(5):544-559. PubMed ID: 32666327 [Abstract] [Full Text] [Related]
3. Flow patterns at the major T-junctions of the dog descending aorta. Karino T, Motomiya M, Goldsmith HL. J Biomech; 1990 Oct; 23(6):537-48. PubMed ID: 2341417 [Abstract] [Full Text] [Related]
4. Disturbances of flow through transparent dog aortic arch. Fukushima T, Karino T, Goldsmith HL. Heart Vessels; 1985 Feb; 1(1):24-8. PubMed ID: 4093352 [Abstract] [Full Text] [Related]
5. Blood flow in branching vessels. Pinchak AC, Ostrach S. J Appl Physiol; 1976 Nov; 41(5 Pt. 1):646-58. PubMed ID: 993152 [Abstract] [Full Text] [Related]
6. The horseshoe vortex: a secondary flow generated in arteries with stenosis, bifurcation, and branchings. Fukushima T, Azuma T. Biorheology; 1982 Nov; 19(1/2):143-54. PubMed ID: 7093448 [Abstract] [Full Text] [Related]
7. Role of blood cell-wall interactions in thrombogenesis and atherogenesis: a microrheological study. Karino T, Goldsmith HL. Biorheology; 1984 Nov; 21(4):587-601. PubMed ID: 6487769 [Abstract] [Full Text] [Related]
8. Flow patterns and preferred sites of atherosclerotic lesions in the human aorta - II. Abdominal aorta. Endo S, Goldsmith HL, Karino T. Biorheology; 2014 Nov; 51(4-5):257-74. PubMed ID: 25281597 [Abstract] [Full Text] [Related]
10. Experimental analysis of the influence of stenotic geometry on steady flow. Liepsch D, Singh M, Lee M. Biorheology; 1992 Feb; 29(4):419-31. PubMed ID: 1306368 [Abstract] [Full Text] [Related]
11. Numerical simulation of flow fields in a tube with two branches. Lee D, Chen JY. J Biomech; 2000 Oct; 33(10):1305-12. PubMed ID: 10899341 [Abstract] [Full Text] [Related]
12. Steady expiratory flow in a model symmetric bifurcation. Zhao Y, Lieber BB. J Biomech Eng; 1994 Aug; 116(3):318-23. PubMed ID: 7799634 [Abstract] [Full Text] [Related]
13. Bend sweep angle and Reynolds number effects on hemodynamics of s-shaped arteries. Niazmand H, Rajabi Jaghargh E. Ann Biomed Eng; 2010 Sep; 38(9):2817-28. PubMed ID: 20428951 [Abstract] [Full Text] [Related]
14. Numerical simulation of steady flow in a model of the aortic bifurcation. Thiriet M, Pares C, Saltel E, Hecht F. J Biomech Eng; 1992 Feb; 114(1):40-9. PubMed ID: 1491585 [Abstract] [Full Text] [Related]
15. Toward an optimal design principle in symmetric and asymmetric tree flow networks. Miguel AF. J Theor Biol; 2016 Jan 21; 389():101-9. PubMed ID: 26555845 [Abstract] [Full Text] [Related]
16. Arterial bifurcation flows--effects of flow rate and area ratio. Feuerstein IA, El Masry OA, Round GF. Can J Physiol Pharmacol; 1976 Dec 21; 54(6):795-808. PubMed ID: 1021217 [Abstract] [Full Text] [Related]
17. Vortex generation in pulsatile flow through arterial bifurcation models including the human carotid artery. Fukushima T, Homma T, Harakawa K, Sakata N, Azuma T. J Biomech Eng; 1988 Aug 21; 110(3):166-71. PubMed ID: 3172734 [Abstract] [Full Text] [Related]