These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
155 related items for PubMed ID: 3997690
1. The effect of ammonia treatment on the solubilization of straw and the growth of cellulolytic rumen bacteria. Kolankaya N, Stewart CS, Duncan SH, Cheng KJ, Costerton JW. J Appl Bacteriol; 1985 Apr; 58(4):371-9. PubMed ID: 3997690 [Abstract] [Full Text] [Related]
2. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Shi Y, Odt CL, Weimer PJ. Appl Environ Microbiol; 1997 Feb; 63(2):734-42. PubMed ID: 9023950 [Abstract] [Full Text] [Related]
3. Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria. Hiltner P, Dehority BA. Appl Environ Microbiol; 1983 Sep; 46(3):642-8. PubMed ID: 6639018 [Abstract] [Full Text] [Related]
5. In Vivo Competitions between Fibrobacter succinogenes, Ruminococcus flavefaciens, and Ruminoccus albus in a Gnotobiotic Sheep Model Revealed by Multi-Omic Analyses. Yeoman CJ, Fields CJ, Lepercq P, Ruiz P, Forano E, White BA, Mosoni P. mBio; 2021 Mar 03; 12(2):. PubMed ID: 33658330 [Abstract] [Full Text] [Related]
6. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. Koike S, Kobayashi Y. FEMS Microbiol Lett; 2001 Nov 13; 204(2):361-6. PubMed ID: 11731149 [Abstract] [Full Text] [Related]
7. Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria. Chen J, Weimer P. Microbiology (Reading); 2001 Jan 13; 147(Pt 1):21-30. PubMed ID: 11160797 [Abstract] [Full Text] [Related]
8. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: pure-culture studies with cellulose and alkaline peroxide-treated wheat straw. Odenyo AA, Mackie RI, Stahl DA, White BA. Appl Environ Microbiol; 1994 Oct 13; 60(10):3697-703. PubMed ID: 7527202 [Abstract] [Full Text] [Related]
9. Incorporation of [(15)N] ammonia by the cellulolytic ruminal bacteria Fibrobacter succinogenes BL2, Ruminococcus albus SY3, and Ruminococcus flavefaciens 17. Atasoglu C, Newbold CJ, Wallace RJ. Appl Environ Microbiol; 2001 Jun 13; 67(6):2819-22. PubMed ID: 11375199 [Abstract] [Full Text] [Related]
10. Use of real-time PCR technique in studying rumen cellulolytic bacteria population as affected by level of roughage in swamp buffalo. Wanapat M, Cherdthong A. Curr Microbiol; 2009 Apr 13; 58(4):294-9. PubMed ID: 19018588 [Abstract] [Full Text] [Related]
11. Interactions between Treponema bryantii and cellulolytic bacteria in the in vitro degradation of straw cellulose. Kudo H, Cheng KJ, Costerton JW. Can J Microbiol; 1987 Mar 13; 33(3):244-8. PubMed ID: 3567744 [Abstract] [Full Text] [Related]
12. Magnesium requirement of some of the principal rumen cellulolytic bacteria. Morales MS, Dehority BA. Animal; 2014 Sep 13; 8(9):1427-32. PubMed ID: 24846132 [Abstract] [Full Text] [Related]
14. Competition between ruminal cellulolytic bacteria for adhesion to cellulose. Mosoni P, Fonty G, Gouet P. Curr Microbiol; 1997 Jul 13; 35(1):44-7. PubMed ID: 9175559 [Abstract] [Full Text] [Related]
15. Electron microscopic study of the methylcellulose-mediated detachment of cellulolytic rumen bacteria from cellulose fibers. Kudo H, Cheng KJ, Costerton JW. Can J Microbiol; 1987 Mar 13; 33(3):267-72. PubMed ID: 3567745 [Abstract] [Full Text] [Related]
17. Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect of a yeast additive. Mosoni P, Chaucheyras-Durand F, Béra-Maillet C, Forano E. J Appl Microbiol; 2007 Dec 13; 103(6):2676-85. PubMed ID: 18045448 [Abstract] [Full Text] [Related]
18. Competition for cellobiose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Shi Y, Weimer PJ. Appl Environ Microbiol; 1997 Feb 13; 63(2):743-8. PubMed ID: 9023951 [Abstract] [Full Text] [Related]
19. Gas-liquid chromatography for evaluating polysaccharide degradation by Ruminococcus flavefaciens C94 and Bacteroides succinogenes S85. Collings GF, Yokoyama MT. Appl Environ Microbiol; 1980 Mar 13; 39(3):566-71. PubMed ID: 7189996 [Abstract] [Full Text] [Related]
20. Interactions between rumen bacterial strains during the degradation and utilization of the monosaccharides of barley straw cell-walls. Miron J, Duncan SH, Stewart CS. J Appl Bacteriol; 1994 Mar 13; 76(3):282-7. PubMed ID: 8157547 [Abstract] [Full Text] [Related] Page: [Next] [New Search]