These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
438 related items for PubMed ID: 3998216
1. The organization of retinal projections to the diencephalon and pretectum in the cichlid fish, Haplochromis burtoni. Presson J, Fernald RD, Max M. J Comp Neurol; 1985 May 15; 235(3):360-74. PubMed ID: 3998216 [Abstract] [Full Text] [Related]
2. A quantitative study of the relative contribution of different retinal sectors to the innervation of various thalamic and pretectal nuclei in goldfish. Springer AD, Mednick AS. J Comp Neurol; 1985 Dec 15; 242(3):369-80. PubMed ID: 2418076 [Abstract] [Full Text] [Related]
3. Retinofugal and retinopetal projections in the cichlid fish Astronotus ocellatus. Springer AD, Mednick AS. J Comp Neurol; 1985 Jun 08; 236(2):179-96. PubMed ID: 3932491 [Abstract] [Full Text] [Related]
4. Retinal recipient nuclei in the painted turtle, Chrysemys picta: an autoradiographic and HRP study. Bass AH, Northcutt RG. J Comp Neurol; 1981 Jun 10; 199(1):97-112. PubMed ID: 7263950 [Abstract] [Full Text] [Related]
5. Retinotopic organization of central optic projections in Rana pipiens. Montgomery N, Fite KV. J Comp Neurol; 1989 May 22; 283(4):526-40. PubMed ID: 2787335 [Abstract] [Full Text] [Related]
7. Retinal projections in gymnotid fishes. Lázár G, Tóth P, Szabo T. J Hirnforsch; 1987 Apr 20; 28(1):13-26. PubMed ID: 3598174 [Abstract] [Full Text] [Related]
8. Visual system of a naturally microphthalmic mammal: the blind mole rat, Spalax ehrenbergi. Cooper HM, Herbin M, Nevo E. J Comp Neurol; 1993 Feb 15; 328(3):313-50. PubMed ID: 8440785 [Abstract] [Full Text] [Related]
9. Topography of retinal axons in the diencephalon of goldfish. Fraley SM, Sharma SC. Cell Tissue Res; 1984 Feb 15; 238(3):529-38. PubMed ID: 6084555 [Abstract] [Full Text] [Related]
10. Retinal projections in the freshwater butterfly fish, Pantodon buchholzi (Osteoglossoidei). I. Cytoarchitectonic analysis and primary visual pathways. Butler AB, Saidel WM. Brain Behav Evol; 1991 Feb 15; 38(2-3):127-53. PubMed ID: 1742599 [Abstract] [Full Text] [Related]
11. Topography of the retinal projection to the superficial pretectal parvicellular nucleus of goldfish: a cobaltous-lysine study. Springer AD, Mednick AS. J Comp Neurol; 1985 Jul 08; 237(2):239-50. PubMed ID: 4031123 [Abstract] [Full Text] [Related]
12. Retinal projections in the goldfish: a study using cobaltous-lysine. Springer AD, Gaffney JS. J Comp Neurol; 1981 Dec 10; 203(3):401-24. PubMed ID: 6274920 [Abstract] [Full Text] [Related]
13. Retinofugal and retinopetal projections in the green sunfish, Lepomis cyanellus. Northcutt RG, Butler AB. Brain Behav Evol; 1991 Dec 10; 37(6):333-54. PubMed ID: 1913138 [Abstract] [Full Text] [Related]
15. Visual and electrosensory circuits of the diencephalon in mormyrids: an evolutionary perspective. Wullimann MF, Northcutt RG. J Comp Neurol; 1990 Jul 22; 297(4):537-52. PubMed ID: 2384612 [Abstract] [Full Text] [Related]
16. Retinofugal pathways in the lingnose gar Lepisosteus osseus (linnaeus). Northcutt RG, Butler AB. J Comp Neurol; 1976 Mar 01; 166(1):1-15. PubMed ID: 1262543 [Abstract] [Full Text] [Related]
17. The diencephalon of the Pacific herring, Clupea harengus: retinofugal projections to the diencephalon and optic tectum. Northcutt RG, Butler AB. J Comp Neurol; 1993 Feb 22; 328(4):547-61. PubMed ID: 8381443 [Abstract] [Full Text] [Related]
18. Fibre organization of the monkey's optic tract: I. Segregation of functionally distinct optic axons. Reese BE, Cowey A. J Comp Neurol; 1990 May 15; 295(3):385-400. PubMed ID: 2351758 [Abstract] [Full Text] [Related]