These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


358 related items for PubMed ID: 4016189

  • 1. Red blood cell deformation in shear flow. Effects of internal and external phase viscosity and of in vivo aging.
    Pfafferott C, Nash GB, Meiselman HJ.
    Biophys J; 1985 May; 47(5):695-704. PubMed ID: 4016189
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Tank-tread frequency of the red cell membrane: dependence on the viscosity of the suspending medium.
    Fischer TM.
    Biophys J; 2007 Oct 01; 93(7):2553-61. PubMed ID: 17545241
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Red blood cell orientation in orbit C = 0.
    Bitbol M.
    Biophys J; 1986 May 01; 49(5):1055-68. PubMed ID: 3708090
    [Abstract] [Full Text] [Related]

  • 7. Osmolality-mediated Fahraeus and Fahraeus-Lindqvist effects for human RBC suspensions.
    McKay CB, Meiselman HJ.
    Am J Physiol; 1988 Feb 01; 254(2 Pt 2):H238-49. PubMed ID: 3344815
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Geometric, osmotic, and membrane mechanical properties of density-separated human red cells.
    Linderkamp O, Meiselman HJ.
    Blood; 1982 Jun 01; 59(6):1121-7. PubMed ID: 7082818
    [Abstract] [Full Text] [Related]

  • 10. Shear thinning and shear thickening of a confined suspension of vesicles.
    Nait Ouhra A, Farutin A, Aouane O, Ez-Zahraouy H, Benyoussef A, Misbah C.
    Phys Rev E; 2018 Jan 01; 97(1-1):012404. PubMed ID: 29448354
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Spin-label studies of erythrocyte deformability. IV. Relation of electron spin resonance spectral change with deformation and orientation of erythrocytes in shear flow.
    Noji S, Kon H, Taniguchi S.
    Biophys J; 1984 Sep 01; 46(3):349-55. PubMed ID: 6091803
    [Abstract] [Full Text] [Related]

  • 14. Deformation response of red blood cells in oscillatory shear flow.
    Nakajima T, Kon K, Maeda N, Tsunekawa K, Shiga T.
    Am J Physiol; 1990 Oct 01; 259(4 Pt 2):H1071-8. PubMed ID: 2221114
    [Abstract] [Full Text] [Related]

  • 15. Computation of the average shear-induced deformation of red blood cells as a function of osmolality.
    Clark MR.
    Blood Cells; 1989 Oct 01; 15(2):427-39; discussion 440-2. PubMed ID: 2765672
    [Abstract] [Full Text] [Related]

  • 16. Detection of red cell aggregation by low shear rate viscometry in whole blood with elevated plasma viscosity.
    Janzen J, Elliott TG, Carter CJ, Brooks DE.
    Biorheology; 2000 Oct 01; 37(3):225-37. PubMed ID: 11026942
    [Abstract] [Full Text] [Related]

  • 17. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N, Bransky A, Dinnar U.
    J Biomech; 2007 Oct 01; 40(9):2088-95. PubMed ID: 17188279
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Analysis of factors regulating erythrocyte deformability.
    Mohandas N, Clark MR, Jacobs MS, Shohet SB.
    J Clin Invest; 1980 Sep 01; 66(3):563-73. PubMed ID: 6156955
    [Abstract] [Full Text] [Related]

  • 20. Tumbling of vesicles under shear flow within an advected-field approach.
    Biben T, Misbah C.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar 01; 67(3 Pt 1):031908. PubMed ID: 12689102
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.