These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


253 related items for PubMed ID: 4027217

  • 1. Effects of lipid environment on the light-induced conformational changes of rhodopsin. 1. Absence of metarhodopsin II production in dimyristoylphosphatidylcholine recombinant membranes.
    Baldwin PA, Hubbell WL.
    Biochemistry; 1985 May 21; 24(11):2624-32. PubMed ID: 4027217
    [Abstract] [Full Text] [Related]

  • 2. Effects of lipid environment on the light-induced conformational changes of rhodopsin. 2. Roles of lipid chain length, unsaturation, and phase state.
    Baldwin PA, Hubbell WL.
    Biochemistry; 1985 May 21; 24(11):2633-9. PubMed ID: 4027218
    [Abstract] [Full Text] [Related]

  • 3. Role of sn-1-saturated,sn-2-polyunsaturated phospholipids in control of membrane receptor conformational equilibrium: effects of cholesterol and acyl chain unsaturation on the metarhodopsin I in equilibrium with metarhodopsin II equilibrium.
    Mitchell DC, Straume M, Litman BJ.
    Biochemistry; 1992 Jan 28; 31(3):662-70. PubMed ID: 1731921
    [Abstract] [Full Text] [Related]

  • 4. [Molecular mechanisms of photoreception. IV. Photoregeneration of rhodopsin from metarhodopsin II using the artificial lipid membrane method for detection of intermediate steps of this reaction].
    Orlov NIa, Fesenko EE.
    Mol Biol (Mosk); 1981 Jan 28; 15(6):1276-85. PubMed ID: 7322116
    [Abstract] [Full Text] [Related]

  • 5. Shift in the relation between flash-induced metarhodopsin I and metarhodpsin II within the first 10% rhodopsin bleaching in bovine disc membranes.
    Emeis D, Hofmann KP.
    FEBS Lett; 1981 Dec 28; 136(2):201-7. PubMed ID: 7327258
    [No Abstract] [Full Text] [Related]

  • 6. Membrane lipid influences on the energetics of the metarhodopsin I and metarhodopsin II conformational states of rhodopsin probed by flash photolysis.
    Gibson NJ, Brown MF.
    Photochem Photobiol; 1991 Dec 28; 54(6):985-92. PubMed ID: 1775536
    [Abstract] [Full Text] [Related]

  • 7. Rhodopsin in dimyristoylphosphatidylcholine-reconstituted bilayers forms metarhodopsin II and activates Gt.
    Mitchell DC, Kibelbek J, Litman BJ.
    Biochemistry; 1991 Jan 08; 30(1):37-42. PubMed ID: 1899020
    [Abstract] [Full Text] [Related]

  • 8. The decay of metarhodopsin II in cattle rod outer segment membranes: protonation and spectral changes.
    Bennett N.
    Biochem Biophys Res Commun; 1980 Oct 31; 96(4):1695-701. PubMed ID: 7447949
    [No Abstract] [Full Text] [Related]

  • 9. Protein-lipid interactions at membrane surfaces: a deuterium and phosphorus nuclear magnetic resonance study of the interaction between bovine rhodopsin and the bilayer head groups of dimyristoylphosphatidylcholine.
    Ryba NJ, Dempsey CE, Watts A.
    Biochemistry; 1986 Aug 26; 25(17):4818-25. PubMed ID: 3768315
    [Abstract] [Full Text] [Related]

  • 10. Interplay between hydroxylamine, metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes.
    Hofmann KP, Emeis D, Schnetkamp PP.
    Biochim Biophys Acta; 1983 Oct 31; 725(1):60-70. PubMed ID: 6313051
    [Abstract] [Full Text] [Related]

  • 11. Two forms of intermediates of frog rhodopsin in rod outer segments.
    Sasaki N, Tokunaga F, Yoshizawa T.
    Biochim Biophys Acta; 1983 Jan 13; 722(1):80-7. PubMed ID: 6600624
    [Abstract] [Full Text] [Related]

  • 12. Complex formation between metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes leads to a shift of the photoproduct equilibrium.
    Emeis D, Kühn H, Reichert J, Hofmann KP.
    FEBS Lett; 1982 Jun 21; 143(1):29-34. PubMed ID: 6288450
    [No Abstract] [Full Text] [Related]

  • 13. Reconstitution of rhodopsin and the cGMP cascade in polymerized bilayer membranes.
    Tyminski PN, Latimer LH, O'Brien DF.
    Biochemistry; 1988 Apr 19; 27(8):2696-705. PubMed ID: 2840946
    [Abstract] [Full Text] [Related]

  • 14. Electrostatic properties of membrane lipids coupled to metarhodopsin II formation in visual transduction.
    Wang Y, Botelho AV, Martinez GV, Brown MF.
    J Am Chem Soc; 2002 Jul 03; 124(26):7690-701. PubMed ID: 12083922
    [Abstract] [Full Text] [Related]

  • 15. Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II.
    Schleicher A, Kühn H, Hofmann KP.
    Biochemistry; 1989 Feb 21; 28(4):1770-5. PubMed ID: 2719933
    [Abstract] [Full Text] [Related]

  • 16. The kinetics and thermodynamics of bleaching of rhodopsin in dimyristoylphosphatidylcholine. Identification of meta-I, meta-II, and meta-III intermediates.
    Ryba NJ, Marsh D, Uhl R.
    Biophys J; 1993 Jun 21; 64(6):1801-12. PubMed ID: 8396448
    [Abstract] [Full Text] [Related]

  • 17. Transducin activation by molecular species of rhodopsin other than metarhodopsin II.
    Okada D, Nakai T, Ikai A.
    Photochem Photobiol; 1989 Feb 21; 49(2):197-203. PubMed ID: 2540499
    [Abstract] [Full Text] [Related]

  • 18. Effects of volatile anesthetics on light-induced proton uptake of rhodopsin in bovine rod outer segment disk membrane.
    Mashimo T, Tashiro C, Yoshiya I.
    Anesthesiology; 1984 Oct 21; 61(4):439-43. PubMed ID: 6091504
    [Abstract] [Full Text] [Related]

  • 19. Lipid-protein interactions mediate the photochemical function of rhodopsin.
    Wiedmann TS, Pates RD, Beach JM, Salmon A, Brown MF.
    Biochemistry; 1988 Aug 23; 27(17):6469-74. PubMed ID: 3219348
    [Abstract] [Full Text] [Related]

  • 20. Optical study of the light-induced protonation changes associated with the metarhodopson II intermediate in rod-outer-segment membranes.
    Bennett N.
    Eur J Biochem; 1980 Oct 23; 111(1):99-103. PubMed ID: 7439192
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.