These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


123 related items for PubMed ID: 4037372

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Computerized three-dimensional reconstruction of cartilage canals in chick tibial chondroepiphysis.
    Eslaminejad MR, Valojerdi MR, Yazdi PE.
    Anat Histol Embryol; 2006 Aug; 35(4):247-52. PubMed ID: 16836589
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. [Experimental changes in the sites of presumptive articular areas].
    Amprino R.
    Bull Assoc Anat (Nancy); 1981 Dec; 65(191):359-66. PubMed ID: 7344734
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Differential expression of neural cell adhesion molecule (NCAM) during osteogenesis and secondary chondrogenesis in the embryonic chick.
    Fang J, Hall BK.
    Int J Dev Biol; 1995 Jun; 39(3):519-28. PubMed ID: 7577443
    [Abstract] [Full Text] [Related]

  • 27. Heterogeneity of the cartilage-marrow interface during uncalcified cartilage resorption in the chick embryo tibia.
    Aceitero J, Gaytan F, Ranz FB, Ribes R.
    J Anat; 1988 Oct; 160():39-50. PubMed ID: 3253260
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Coordinated development of embryonic long bone on chorioallantoic membrane in ovo prevents perichondrium-derived suppressive signals against cartilage growth.
    Maeda Y, Noda M.
    Bone; 2003 Jan; 32(1):27-34. PubMed ID: 12584033
    [Abstract] [Full Text] [Related]

  • 31. High-resolution immunolocalization of osteopontin and osteocalcin in bone and cartilage during endochondral ossification in the chicken tibia.
    McKee MD, Glimcher MJ, Nanci A.
    Anat Rec; 1992 Dec; 234(4):479-92. PubMed ID: 1456451
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. New aspects of endochondral ossification in the chick: chondrocyte apoptosis, bone formation by former chondrocytes, and acid phosphatase activity in the endochondral bone matrix.
    Roach HI.
    J Bone Miner Res; 1997 May; 12(5):795-805. PubMed ID: 9144346
    [Abstract] [Full Text] [Related]

  • 34. Static and dynamic osteogenesis: two different types of bone formation.
    Ferretti M, Palumbo C, Contri M, Marotti G.
    Anat Embryol (Berl); 2002 Dec; 206(1-2):21-9. PubMed ID: 12478364
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Enzymes active in the areas undergoing cartilage resorption during the development of the secondary ossification center in the tibiae of rats ages 0-21 days: I. Two groups of proteinases cleave the core protein of aggrecan.
    Lee ER, Lamplugh L, Davoli MA, Beauchemin A, Chan K, Mort JS, Leblond CP.
    Dev Dyn; 2001 Sep; 222(1):52-70. PubMed ID: 11507769
    [Abstract] [Full Text] [Related]

  • 38. Induction of bone-related proteins, osteocalcin and osteopontin, and their matrix ultrastructural localization with development of chondrocyte hypertrophy in vitro.
    Lian JB, McKee MD, Todd AM, Gerstenfeld LC.
    J Cell Biochem; 1993 Jun; 52(2):206-19. PubMed ID: 8366137
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.