These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
89 related items for PubMed ID: 403915
1. Energy-dependent efflux of K+ from heart mitochondria. Chavez E, Jung DW, Brierley GP. Biochem Biophys Res Commun; 1977 Mar 07; 75(1):69-75. PubMed ID: 403915 [No Abstract] [Full Text] [Related]
7. Effect of phosphate and ionophores on (14C)-NEM incorporation in mitochondrial membranes and relationships with phosphate carrier system. Briand Y, Debise R, Durand R. Biochimie; 1975 Apr 05; 57(6-7):787-96. PubMed ID: 1203324 [Abstract] [Full Text] [Related]
8. Mutual inactivation of valinomycin and protonophores by complex formation in liposomal membranes. Krishnamoorthy G. FEBS Lett; 1988 May 09; 232(1):199-203. PubMed ID: 2835269 [Abstract] [Full Text] [Related]
9. Isolation of ionophores from mitochondria. Blondin GA. Ann N Y Acad Sci; 1974 Feb 18; 227():392-7. PubMed ID: 4524340 [No Abstract] [Full Text] [Related]
10. Lipophilic thiourea and thiouracil as inhibitors of oxidative phosphorylation. Bäuerlein E, Keihl R. FEBS Lett; 1976 Jan 01; 61(1):68-71. PubMed ID: 1245224 [No Abstract] [Full Text] [Related]
11. Matrix magnesium and the permeability of heart mitochondria to potassium ion. Jung DW, Brierley GP. J Biol Chem; 1986 May 15; 261(14):6408-15. PubMed ID: 3084482 [Abstract] [Full Text] [Related]
12. Activation of energy-linked K+ accumulation in isolated heart mitochondria by non-ionic detergents. Brierley GP, Jurkowitz M, Scott KM, Hwang KM, Merola AJ. Biochem Biophys Res Commun; 1971 Apr 02; 43(1):50-7. PubMed ID: 4252962 [No Abstract] [Full Text] [Related]
14. Construction of mitochondrial H+ -transporting system in proteoliposomes. Shchipakin V, Chuchlova E, Evtodienko Y. Biochem Biophys Res Commun; 1976 Mar 08; 69(1):123-7. PubMed ID: 4070 [No Abstract] [Full Text] [Related]
15. Enhancement of rates of H+, Na+ and K+ transport across phospholipid vesicular membrane by the combined action of carbonyl cyanide m-chlorophenylhydrazone and valinomycin: temperature-jump studies. Prabhananda BS, Kombrabail MH. Biochim Biophys Acta; 1995 May 04; 1235(2):323-35. PubMed ID: 7756342 [Abstract] [Full Text] [Related]
16. The effect of maleate and lithium on renal function and metabolism. Angielski S, Pempkowiak L, Gmaj P, Hoppe A, Nowicka C. Curr Probl Clin Biochem; 1976 May 04; 6():142-52. PubMed ID: 11962 [No Abstract] [Full Text] [Related]
17. K+-valinomycin and chloride conductance of the human red cell membrane. Influence of the membrane protonophore carbonylcyanide m-chlorophenylhydrazone. Bennekou P. Biochim Biophys Acta; 1984 Sep 19; 776(1):1-9. PubMed ID: 6477898 [Abstract] [Full Text] [Related]
18. Action of local anaesthetics on passive and energy-linked ion translocation in the inner mitochondrial membrane. Papa S, Guerrieri F, Simone S, Lorusso M. J Bioenerg; 1972 Dec 19; 3(6):553-68. PubMed ID: 4675493 [No Abstract] [Full Text] [Related]
19. Mechanism of 3,5-di-tert-butyl-4-hydroxybenzylidene-malononitrile-mediated proton uptake in liposomes. Kinetics of proton uptake compensated by valinomycin-induced K+-efflux. Yamaguchi A, Anraku Y. Biochim Biophys Acta; 1978 Jan 11; 501(1):136-49. PubMed ID: 23155 [No Abstract] [Full Text] [Related]
20. Induction of transmembrane proton transfer by mercurials in mitochondria. II. Release of a Na+-K+ ionophore. Southard JH, Blondin GA, Green DE. J Biol Chem; 1974 Feb 10; 249(3):678-81. PubMed ID: 4130102 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]