These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Polyol formation and NADPH-dependent reductases in dog retinal capillary pericytes and endothelial cells. Sato S, Secchi EF, Lizak MJ, Fukase S, Ohta N, Murata M, Tsai JY, Kador PF. Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):697-704. PubMed ID: 10067973 [Abstract] [Full Text] [Related]
3. Aldose reductase activity in retinal and cerebral microvessels and cultured vascular cells. Kennedy A, Frank RN, Varma SD. Invest Ophthalmol Vis Sci; 1983 Sep; 24(9):1250-8. PubMed ID: 6411648 [Abstract] [Full Text] [Related]
4. Role of the polyol pathway in high glucose-induced apoptosis of retinal pericytes and proliferation of endothelial cells. Takamura Y, Tomomatsu T, Kubo E, Tsuzuki S, Akagi Y. Invest Ophthalmol Vis Sci; 2008 Jul; 49(7):3216-23. PubMed ID: 18362110 [Abstract] [Full Text] [Related]
5. Aldose reductase localization in human retinal mural cells. Akagi Y, Kador PF, Kuwabara T, Kinoshita JH. Invest Ophthalmol Vis Sci; 1983 Nov; 24(11):1516-9. PubMed ID: 6417042 [Abstract] [Full Text] [Related]
6. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats. Winkler BS, Arnold MJ, Brassell MA, Sliter DR. Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631 [Abstract] [Full Text] [Related]
7. Elevated glucose levels increase retinal glycolysis and sorbitol pathway metabolism. Implications for diabetic retinopathy. Van den Enden MK, Nyengaard JR, Ostrow E, Burgan JH, Williamson JR. Invest Ophthalmol Vis Sci; 1995 Jul; 36(8):1675-85. PubMed ID: 7601647 [Abstract] [Full Text] [Related]
8. Aldose reductase inhibition prevents glucose-induced apoptosis in cultured bovine retinal microvascular pericytes. Naruse K, Nakamura J, Hamada Y, Nakayama M, Chaya S, Komori T, Kato K, Kasuya Y, Miwa K, Hotta N. Exp Eye Res; 2000 Sep; 71(3):309-15. PubMed ID: 10973739 [Abstract] [Full Text] [Related]
9. Aldose reductase and polyol in cultured pericytes of human retinal capillaries. Hohman TC, Nishimura C, Robison WG. Exp Eye Res; 1989 Jan; 48(1):55-60. PubMed ID: 2493386 [Abstract] [Full Text] [Related]
10. The role of polyol pathway in high glucose-induced endothelial cell damages. Oyama T, Miyasita Y, Watanabe H, Shirai K. Diabetes Res Clin Pract; 2006 Sep; 73(3):227-34. PubMed ID: 16624439 [Abstract] [Full Text] [Related]
11. Sorbitol pathway activity and utilization of polyols in astroglia-rich primary cultures. Wiesinger H, Thiess U, Hamprecht B. Glia; 1990 Sep; 3(4):277-82. PubMed ID: 2144507 [Abstract] [Full Text] [Related]
12. 3-FG as substrate for investigating flux through the polyol pathway in dog lens by 19F-NMR spectroscopy. Lizak MJ, Secchi EF, Lee JW, Sato S, Kubo E, Akagi Y, Kador PF. Invest Ophthalmol Vis Sci; 1998 Dec; 39(13):2688-95. PubMed ID: 9856779 [Abstract] [Full Text] [Related]
13. Polyol effects on growth factors and MAPK signaling in rat retinal capillary cells. Zhang P, Zhang Z, Kador PF. J Ocul Pharmacol Ther; 2014 Feb; 30(1):4-11. PubMed ID: 24256145 [Abstract] [Full Text] [Related]
14. Dietary sources of aldose reductase inhibitors: prospects for alleviating diabetic complications. Saraswat M, Muthenna P, Suryanarayana P, Petrash JM, Reddy GB. Asia Pac J Clin Nutr; 2008 Feb; 17(4):558-65. PubMed ID: 19114390 [Abstract] [Full Text] [Related]
15. Immunohistochemical localization for aldose reductase in diabetic lenses. Akagi Y, Kador PF, Kinoshita JH. Invest Ophthalmol Vis Sci; 1987 Jan; 28(1):163-7. PubMed ID: 3100473 [Abstract] [Full Text] [Related]
16. The effects of glucose and an aldose reductase inhibitor on the sorbitol content and collagen synthesis of bovine retinal capillary pericytes in culture. Li W, Khatami M, Rockey JH. Exp Eye Res; 1985 Mar; 40(3):439-44. PubMed ID: 3933992 [Abstract] [Full Text] [Related]
17. A selective aldose reductase inhibitor of a new structural class prevents or reverses early retinal abnormalities in experimental diabetic retinopathy. Sun W, Oates PJ, Coutcher JB, Gerhardinger C, Lorenzi M. Diabetes; 2006 Oct; 55(10):2757-62. PubMed ID: 17003340 [Abstract] [Full Text] [Related]
18. Sorbitol, myo-inositol, and rod outer segment phagocytosis in cultured hRPE cells exposed to glucose. In vitro model of myo-inositol depletion hypothesis of diabetic complications. Del Monte MA, Rabbani R, Diaz TC, Lattimer SA, Nakamura J, Brennan MC, Greene DA. Diabetes; 1991 Oct; 40(10):1335-45. PubMed ID: 1936595 [Abstract] [Full Text] [Related]
19. Retinal capillaries: proliferation of mural cells in vitro. Buzney SM, Frank RN, Robison WG. Science; 1975 Dec 05; 190(4218):985-6. PubMed ID: 810891 [Abstract] [Full Text] [Related]
20. Regulation of lens aldose reductase activity by nitric oxide. Srivastava S, Tammali R, Chandra D, Greer DA, Ramana KV, Bhatnagar A, Srivastava SK. Exp Eye Res; 2005 Dec 05; 81(6):664-72. PubMed ID: 15967436 [Abstract] [Full Text] [Related] Page: [Next] [New Search]