These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
97 related items for PubMed ID: 4052420
1. Evidence for non-uniform distribution of D-glucose within human red cells during net exit and counterflow. Naftalin RJ, Smith PM, Roselaar SE. Biochim Biophys Acta; 1985 Nov 07; 820(2):235-49. PubMed ID: 4052420 [Abstract] [Full Text] [Related]
2. Human erythrocyte sugar transport is incompatible with available carrier models. Cloherty EK, Heard KS, Carruthers A. Biochemistry; 1996 Aug 13; 35(32):10411-21. PubMed ID: 8756697 [Abstract] [Full Text] [Related]
3. Asymmetric or symmetric? Cytosolic modulation of human erythrocyte hexose transfer. Carruthers A, Melchior DL. Biochim Biophys Acta; 1983 Feb 13; 728(2):254-66. PubMed ID: 6681982 [Abstract] [Full Text] [Related]
5. Anomalous asymmetric kinetics of human red cell hexose transfer: role of cytosolic adenosine 5'-triphosphate. Carruthers A. Biochemistry; 1986 Jun 17; 25(12):3592-602. PubMed ID: 3718945 [Abstract] [Full Text] [Related]
6. GLUT-1 mediation of rapid glucose transport in dolphin (Tursiops truncatus) red blood cells. Craik JD, Young JD, Cheeseman CI. Am J Physiol; 1998 Jan 17; 274(1):R112-9. PubMed ID: 9458906 [Abstract] [Full Text] [Related]
7. Interactions of sodium pentobarbital with D-glucose and L-sorbose transport in human red cells. Naftalin RJ, Arain M. Biochim Biophys Acta; 1999 Jun 09; 1419(1):78-88. PubMed ID: 10366673 [Abstract] [Full Text] [Related]
8. Kinetics of glucose transport in human erythrocytes. Brahm J. J Physiol; 1983 Jun 09; 339():339-54. PubMed ID: 6887027 [Abstract] [Full Text] [Related]
9. Infinite-cis kinetics support the carrier model for erythrocyte glucose transport. Wheeler TJ, Whelan JD. Biochemistry; 1988 Mar 08; 27(5):1441-50. PubMed ID: 3365399 [Abstract] [Full Text] [Related]
10. A kinetic analysis of hexose transport in cultured human lymphocytes (IM-9). Rees WD, Gliemann J. Biochim Biophys Acta; 1985 Jan 10; 812(1):98-106. PubMed ID: 4038456 [Abstract] [Full Text] [Related]
11. Activation energy of the slowest step in the glucose carrier cycle: break at 23 degrees C and correlation with membrane lipid fluidity. Whitesell RR, Regen DM, Beth AH, Pelletier DK, Abumrad NA. Biochemistry; 1989 Jun 27; 28(13):5618-25. PubMed ID: 2775725 [Abstract] [Full Text] [Related]
12. Evidence from temperature studies that the human erythrocyte hexose transporter has a transient memory of its dissociated ligands. Naftalin RJ. Exp Physiol; 1998 Mar 27; 83(2):253-8. PubMed ID: 9568486 [Abstract] [Full Text] [Related]
13. ATP regulation of the human red cell sugar transporter. Carruthers A. J Biol Chem; 1986 Aug 25; 261(24):11028-37. PubMed ID: 3733746 [Abstract] [Full Text] [Related]
14. A single half-turnover of the glucose carrier of the human erythrocyte. Lowe AG, Walmsley AR. Biochim Biophys Acta; 1987 Oct 16; 903(3):547-50. PubMed ID: 3663659 [Abstract] [Full Text] [Related]
15. Evidence from studies of temperature-dependent changes of D-glucose, D-mannose and L-sorbose permeability that different states of activation of the human erythrocyte hexose transporter exist for good and bad substrates. Naftalin RJ. Biochim Biophys Acta; 1997 Aug 14; 1328(1):13-29. PubMed ID: 9298941 [Abstract] [Full Text] [Related]
16. Evidence of multiple operational affinities for D-glucose inside the human erythrocyte membrane. Baker GF, Naftalin RJ. Biochim Biophys Acta; 1979 Feb 02; 550(3):474-84. PubMed ID: 420829 [Abstract] [Full Text] [Related]
17. The kinetics of glucose transport in human red blood cells. Lowe AG, Walmsley AR. Biochim Biophys Acta; 1986 May 28; 857(2):146-54. PubMed ID: 3707948 [Abstract] [Full Text] [Related]
18. Transport of alpha- and beta-D-glucose by the intact human red cell. Carruthers A, Melchior DL. Biochemistry; 1985 Jul 16; 24(15):4244-50. PubMed ID: 4052394 [Abstract] [Full Text] [Related]
19. Kinetics of glucose transport in human erythrocytes: zero-trans efflux and infinite-trans efflux at 0 degree C. Wheeler TJ. Biochim Biophys Acta; 1986 Nov 17; 862(2):387-98. PubMed ID: 3778899 [Abstract] [Full Text] [Related]
20. Asymmetric transport of a fluorescent glucose analogue by human erythrocytes. Speizer L, Haugland R, Kutchai H. Biochim Biophys Acta; 1985 Apr 26; 815(1):75-84. PubMed ID: 4039191 [Abstract] [Full Text] [Related] Page: [Next] [New Search]